AWR: Adaptive Weighting Regression for 3D Hand Pose Estimation

被引:0
|
作者
Huang, Weiting [1 ,2 ]
Ren, Pengfei [1 ,2 ]
Wang, Jingyu [1 ,2 ]
Qi, Qi [1 ,2 ]
Sun, Haifeng [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] EBUPT Informat Technol Co Ltd, Beijing 100191, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an adaptive weighting regression (AWR) method to leverage the advantages of both detection-based and regression-based method. Hand joint coordinates are estimated as discrete integration of all pixels in dense representation, guided by adaptive weight maps. This learnable aggregation process introduces both dense and joint supervision that allows end-to-end training and brings adaptability to weight maps, making network more accurate and robust. Comprehensive exploration experiments are conducted to validate the effectiveness and generality of AWR under various experimental settings, especially its usefulness for different types of dense representation and input modality. Our method outperforms other state-of-the-art methods on four publicly available datasets, including NYU, ICVL, MSRA and HANDS 2017 dataset.
引用
收藏
页码:11061 / 11068
页数:8
相关论文
共 50 条
  • [1] Dense 3D Regression for Hand Pose Estimation
    Wan, Chengde
    Probst, Thomas
    Van Gool, Luc
    Yao, Angela
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5147 - 5156
  • [2] Residual Attention Regression for 3D Hand Pose Estimation
    Li, Jing
    Zhang, Long
    Ju, Zhaojie
    [J]. INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PT IV, 2019, 11743 : 605 - 614
  • [3] Differentiable Spatial Regression: A Novel Method for 3D Hand Pose Estimation
    Zhang, Xingyuan
    Zhang, Fuhai
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 166 - 176
  • [4] Point-to-Point Regression PointNet for 3D Hand Pose Estimation
    Ge, Liuhao
    Ren, Zhou
    Yuan, Junsong
    [J]. COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 : 489 - 505
  • [5] Regression-based 3D Hand Pose Estimation using Heatmaps
    Bandi, Chaitanya
    Thomas, Ulrike
    [J]. PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VOL 5: VISAPP, 2020, : 636 - 643
  • [6] SARN: Shifted Attention Regression Network for 3D Hand Pose Estimation
    Zhu, Chenfei
    Hu, Boce
    Chen, Jiawei
    Ai, Xupeng
    Agrawal, Sunil K. K.
    [J]. BIOENGINEERING-BASEL, 2023, 10 (02):
  • [7] 3D hand pose estimation from a single RGB image by weighting the occlusion and classification
    Mahdikhanlou, Khadijeh
    Ebrahimnezhad, Hossein
    [J]. PATTERN RECOGNITION, 2023, 136
  • [8] 3D Hand Pose Estimation with Neural Networks
    Antonio Serra, Jose
    Garcia-Rodriguez, Jose
    Orts-Escolano, Sergio
    Manuel Garcia-Chamizo, Juan
    Angelopoulou, Anastassia
    Psarrou, Alexandra
    Mentzelopoulos, Markos
    Montoyo-Bojo, Javier
    Dominguez, Enrique
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, PT II, 2013, 7903 : 504 - +
  • [9] Temporal Hints in 3D Hand Pose Estimation
    Yu, Taidong
    Cao, Zhiguo
    Xiao, Yang
    Zhang, Boshen
    Zhu, Zihao
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 2042 - 2047
  • [10] Adaptive Wasserstein Hourglass for Weakly Supervised RGB 3D Hand Pose Estimation
    Zhang, Yumeng
    Chen, Li
    Liu, Yufeng
    Zheng, Wen
    Yong, Junhai
    [J]. MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 2076 - 2084