Experimental Blind Quantum Computing for a Classical Client

被引:74
|
作者
Huang, He-Liang [1 ,2 ,3 ,4 ]
Zhao, Qi [5 ]
Ma, Xiongfeng [5 ]
Liu, Chang [1 ,2 ,3 ]
Su, Zu-En [1 ,2 ,3 ]
Wang, Xi-Lin [1 ,2 ,3 ]
Li, Li [1 ,2 ,3 ]
Liu, Nai-Le [1 ,2 ,3 ]
Sanders, Barry C. [1 ,2 ,3 ,6 ,7 ]
Lu, Chao-Yang [1 ,2 ,3 ]
Pan, Jian-Wei [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol China, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, CAS Ctr Excellence Quantum Informat & Quantum Phy, CAS Alibaba Quantum Comp Lab, Shanghai 201315, Peoples R China
[4] Zhengzhou Informat Sci & Technol Inst, Henan Key Lab Quantum Informat & Cryptog, Zhengzhou 450000, Henan, Peoples R China
[5] Tsinghua Univ, Inst Interdisciplinary Informat Sci, Ctr Quantum Informat, Beijing 100084, Peoples R China
[6] Univ Calgary, Inst Quantum Sci & Technol, Calgary, AB T2N 1N4, Canada
[7] Canadian Inst Adv Res, Program Quantum Informat Sci, Toronto, ON M5G 1M1, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
COMPUTATION;
D O I
10.1103/PhysRevLett.119.050503
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To date, blind quantum computing demonstrations require clients to have weak quantum devices. Here we implement a proof-of-principle experiment for completely classical clients. Via classically interacting with two quantum servers that share entanglement, the client accomplishes the task of having the number 15 factorized by servers who are denied information about the computation itself. This concealment is accompanied by a verification protocol that tests servers' honesty and correctness. Our demonstration shows the feasibility of completely classical clients and thus is a key milestone towards secure cloud quantum computing.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] On the Possibility of Classical Client Blind Quantum Computing
    Cojocaru, Alexandru
    Colisson, Leo
    Kashefi, Elham
    Wallden, Petros
    [J]. CRYPTOGRAPHY, 2021, 5 (01) : 1 - 50
  • [2] IMPOSSIBILITY OF BLIND QUANTUM SAMPLING FOR CLASSICAL CLIENT
    Morimae, Tomoyuki
    Nishimura, Harumichi
    Takeuchi, Yuki
    Tani, Seiichiro
    [J]. QUANTUM INFORMATION & COMPUTATION, 2019, 19 (9-10) : 793 - 806
  • [3] Client-friendly continuous-variable blind and verifiable quantum computing
    Liu, Nana
    Demarie, Tommaso F.
    Tan, Si-Hui
    Aolita, Leandro
    Fitzsimons, Joseph F.
    [J]. PHYSICAL REVIEW A, 2019, 100 (06)
  • [4] Experimental Simulation of Topological Quantum Computing with Classical Circuits
    Zou, Deyuan
    Pan, Naiqiao
    Chen, Tian
    Sun, Houjun
    Zhang, Xiangdong
    [J]. ADVANCED INTELLIGENT SYSTEMS, 2023, 5 (11)
  • [5] Quantum Computing's Classical Problem, Classical Computing's Quantum Problem
    Van Meter, Rodney
    [J]. FOUNDATIONS OF PHYSICS, 2014, 44 (08) : 819 - 828
  • [6] Quantum Computing’s Classical Problem, Classical Computing’s Quantum Problem
    Rodney Van Meter
    [J]. Foundations of Physics, 2014, 44 : 819 - 828
  • [7] From classical computing to quantum computing
    Barila, Adina
    [J]. 2014 INTERNATIONAL CONFERENCE ON DEVELOPMENT AND APPLICATION SYSTEMS (DAS), 2014, : 196 - 203
  • [8] IMPOSSIBILITY OF PERFECTLY-SECURE ONE-ROUND DELEGATED QUANTUM COMPUTING FOR CLASSICAL CLIENT
    Morimae, Tomoyuki
    Koshiba, Takeshi
    [J]. QUANTUM INFORMATION & COMPUTATION, 2019, 19 (3-4) : 214 - 221
  • [9] Distributed Quantum Computing via Integrating Quantum and Classical Computing
    Tang, Wei
    Martonosi, Margaret
    Jones, Timothy
    Mullins, Robert
    [J]. COMPUTER, 2024, 57 (04) : 131 - 136
  • [10] Quantum computing classical physics
    Meyer, DA
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 360 (1792): : 395 - 405