Some of the most widely-used herbicides are the chloroacetanilides exemplified by alachlor and butachlor (derived from 2,6-diethylaniline) and metolachlor and acetochlor (synthesized from 2-ethyl-6-methyIaniline). This investigation tests the hypothesis that the previously-observed oncogenicity of these herbicides is due to genotoxic intermediates such as diethylbenzoquinoneimine, a purported alachlor metabolite. Syntheses are reported here for the corresponding 2,6-dialkylbenzoquinoneimines, selected chloroacetyldialkylbenzoquinoneimines and several other candidate or known metabolites. The possible mutagenicity of diethylbenzoquinoneimine was tested in Salmonella typhimurium strains TA98 and TA100 with a weakly-positive response in the TA100 strain indicating induction of base-pair substitution mutations. The frequency of sister chromatid exchange (SCE) in Chinese hamster ovary cells was increased by alachlor at 10 mu M and diethylaniline but not ethylmethylaniline at 30 and 3 mu M Isolated and cultured peripheral lymphocytes (mostly T cells) were used from two human donors to study the effects of the chloroacetanilides and their metabolites on primary human cells. In tests at 10 mu M, the SCE frequency was increased by alachlor and possibly acetochlor but not by butachlor, metolachlor, dimethachlor (a 2,6-dimethyl analog) and dimethenamid (an analog based on 2,4-dimethyl-3 -thienylamine). At 0.3 mu M in cultured human lymphocytes, alachlor, the corresponding chloroacetanilide( N-dealkyl-alachlor) and aniline metabolites (and their 4-hydroxy derivatives), and diethylbenzoquinone were inactive or active in only one of the two donors whereas at 0.1-0.3 mu M the SCE ratio for treated cells divided by the controls was always higher for diethylbenzoquinoneimine than for ethylmethyl- and dimethylbenzoquinoneimines. All the tested compounds were toxic to lymphocytes, but the depression of the mitotic index and increased duration of the cell cycle were not directly linked with SCE induction. Previous investigations have suggested that chloroacetanilide herbicides such as alachlor derived from 2,6-dialkylanilines are metabolized to 2,6-dialkylbenzoquinoneimines and the present study provides the first direct evidence that these metabolites are genotoxic in human lymphocytes. (C) 1997 Elsevier Science B.V.