Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search

被引:323
|
作者
Joachims, Thorsten
Granka, Laura
Pan, Bing
Hembrooke, Helene
Radlinski, Filip
Gay, Geri
机构
[1] Cornell Univ, Dept Comp Sci, Ithaca, NY 14853 USA
[2] Google Inc, Mountain View, CA 94043 USA
[3] Coll Charleston, Sch Business & Econ, Off Tourism Anal, Beatty Ctr 315, Charleston, SC 29424 USA
[4] Cornell Univ, Dept Informat Sci, Ithaca, NY 14850 USA
关键词
human factors; measurement; reliability; experimentation; clickthrough data; eye-tracking; implicit feedback; query reformulations; user studies; WWW search;
D O I
10.1145/1229179.1229181
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article examines the reliability of implicit feedback generated from clickthrough data and query reformulations in World Wide Web (WWW) search. Analyzing the users decision process using eyetracking and comparing implicit feedback against manual relevance judgments, we conclude that clicks are informative but biased. While this makes the interpretation of clicks as absolute relevance judgments difficult, we show that relative preferences derived from clicks are reasonably accurate on average. We find that such relative preferences are accurate not only between results from an individual query, but across multiple sets of results within chains of query reformulations.
引用
收藏
页数:27
相关论文
共 32 条
  • [1] Implicit feedback in collaborative web search
    Briggs, P
    Smyth, B
    [J]. ICAI '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS 1 AND 2, 2005, : 742 - 746
  • [2] E-commerce Product Query Classification Using Implicit User's Feedback from Clicks
    Lin, Yiu-Chang
    Datta, Ankur
    Di Fabbrizio, Giuseppe
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 1955 - 1959
  • [3] Evaluating Sources of Implicit Feedback in Web Searches
    Fu, Xin
    [J]. RECSYS 07: PROCEEDINGS OF THE 2007 ACM CONFERENCE ON RECOMMENDER SYSTEMS, 2007, : 191 - 194
  • [4] Towards a Model of Implicit Feedback for Web Search
    Fu, Xin
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY, 2010, 61 (01): : 30 - 49
  • [5] Evaluating implicit measures to improve web search
    Fox, S
    Karnawat, K
    Mydland, M
    Dumais, S
    White, T
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2005, 23 (02) : 147 - 168
  • [6] Web search query privacy: Evaluating query obfuscation and anonymizing networks
    Peddinti, Sai
    Saxena, Nitesh
    [J]. JOURNAL OF COMPUTER SECURITY, 2014, 22 (01) : 155 - 199
  • [7] Click data as implicit relevance feedback in web search
    Jung, Seikyung
    Herlocker, Jonathan L.
    Webster, Janet
    [J]. INFORMATION PROCESSING & MANAGEMENT, 2007, 43 (03) : 791 - 807
  • [8] Using implicit relevane feedback to advance Web image search
    Cheng, En
    Jing, Feng
    Li, Mingjing
    Ma, Weiying
    Jin, Hai
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO - ICME 2006, VOLS 1-5, PROCEEDINGS, 2006, : 1773 - 1776
  • [9] Search engines that learn from implicit feedback
    Joachims, Thorsten
    Radlinski, Filip
    [J]. COMPUTER, 2007, 40 (08) : 34 - 40
  • [10] Mining search engine query log for evaluating content and structure of a web site
    Hosseini, Mehdi
    Abolhassani, Hassan
    [J]. PROCEEDINGS OF THE IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE: WI 2007, 2007, : 235 - 241