Exponentially Fast Distributed Coordination for Nonsmooth Convex Optimization

被引:0
|
作者
Niederlaender, Simon K. [1 ]
Allgoewer, Frank [1 ]
Cortes, Jorge [2 ]
机构
[1] Univ Stuttgart, Inst Syst Theory & Automat Control, Pfaffenwaldring 9, D-70550 Stuttgart, Germany
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, 9500 Gilman Dr, La Jolla, CA 92093 USA
基金
美国国家科学基金会;
关键词
STABILITY; SYSTEMS; NETWORK;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper considers networks of agents that seek to cooperatively solve a general class of nonsmooth convex optimization problems with an inherent distributed structure. We characterize the asymptotic convergence properties of distributed continuous-time coordination algorithms whose design relies on the saddle-point dynamics associated with an augmented Lagrangian. The main technical novelty is the identification of a nonsmooth Lyapunov function which, under mild convexity and regularity assumptions on the optimization problem data, allows us to further characterize the exponential convergence rates of the proposed algorithms for optimization subject to either equality or inequality constraints.
引用
收藏
页码:1036 / 1041
页数:6
相关论文
共 50 条