NORMAL APPROXIMATION FOR FUNCTIONS OF HIDDEN MARKOV MODELS

被引:1
|
作者
Houdre, Christian [1 ]
Kerchev, George [2 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[2] Univ Luxembourg, Unite Rech Math, Maison 6 Ave Fonte, L-4364 Esch Sur Alzette, Luxembourg
关键词
Stein?s method; Markov chains; generalized perturbative approach; normal approximation; stochastic geometry; LONGEST COMMON SUBSEQUENCES; LENGTH;
D O I
10.1017/apr.2021.40
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The generalized perturbative approach is an all-purpose variant of Stein???s method used to obtain rates of normal approximation. Originally developed for functions of independent random variables, this method is here extended to functions of the realization of a hidden Markov model. In this dependent setting, rates of convergence are provided in some applications, leading, in each instance, to an extra log-factor vis-??-vis the rate in the independent case.
引用
收藏
页码:536 / 569
页数:34
相关论文
共 50 条