A QR-based least mean squares algorithm for adaptive parameter estimation

被引:6
|
作者
Liu, ZS [1 ]
Li, J [1 ]
机构
[1] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
adaptive parameter estimation; convergence analysis; error propagation properties; LMS algorithms; QR-decomposition;
D O I
10.1109/82.664238
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The optimum nonlinearly modified least-mean-square (ONM-LMS) algorithm has been shown to perform better than both the LMS and the normalized LMS algorithms. This paper proposes a QR-LMS adaptive parameter estimation algorithm that can perform significantly better than ONM-LMS. The performances of QR-LMS, including its numerical stability, error propagation property, and tracking ability, are analyzed. These properties are also verified with numerical examples.
引用
收藏
页码:321 / 329
页数:9
相关论文
共 50 条
  • [1] New QR-based block least mean squares (QR-BLMS) algorithm for adaptive parameter estimation
    Yang, XX
    Chan, SC
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL VI, PROCEEDINGS: SIGNAL PROCESSING THEORY AND METHODS, 2003, : 653 - 656
  • [2] QR-BASED ALGORITHMS FOR MULTICHANNEL ADAPTIVE LEAST-SQUARES LATTICE FILTERS
    LEWIS, PS
    [J]. IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (03): : 421 - 432
  • [3] NUMERICAL STABILITY PROPERTIES OF A QR-BASED FAST LEAST-SQUARES ALGORITHM
    REGALIA, PA
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (06) : 2096 - 2109
  • [4] Approximate QR-based algorithms for recursive nonlinear least squares estiamtion
    Chan, SC
    Zhou, Y
    Lau, WY
    [J]. 2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 4333 - 4336
  • [5] APPLICATION AND STUDY ON QR-BASED LEAST-SQUARES METHOD ALGORITHM IN CONCRETE ULTRASONIC COMPUTERIZED TOMOGRAPHY
    Fan Yao
    Chu Yanli
    [J]. 3RD INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND COMPUTER SCIENCE (ITCS 2011), PROCEEDINGS, 2011, : 366 - 370
  • [6] Noisy FIR parameter estimation by combining of total least mean squares estimation and least mean squares estimation
    Lim, Jun-Seok
    [J]. IEICE ELECTRONICS EXPRESS, 2009, 6 (09): : 572 - 578
  • [7] Least squares QR-based decomposition provides an efficient way of computing optimal regularization parameter in photoacoustic tomography
    Shaw, Calvin B.
    Prakash, Jaya
    Pramanik, Manojit
    Yalavarthy, Phaneendra K.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2013, 18 (08)
  • [8] Adaptive Phasor Estimation Algorithm Based on a Least Squares Method
    Kim, Woo-Joong
    Nam, Soon-Ryul
    Kang, Sang-Hee
    [J]. ENERGIES, 2019, 12 (07)
  • [9] Adaptive Least Mean Squares Estimation of Graph Signals
    Di Lorenzo, Paolo
    Barbarossa, Sergio
    Banelli, Paolo
    Sardellitti, Stefania
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2016, 2 (04): : 555 - 568
  • [10] Sparsity Adaptive Channel Estimation Based on the Log-Sum Constrained Least Mean Squares Algorithm
    Cao, Wenzhou
    Zhang, Aihua
    Ning, Bing
    He, Boxin
    [J]. 2019 2ND IEEE INTERNATIONAL CONFERENCE ON INFORMATION COMMUNICATION AND SIGNAL PROCESSING (ICICSP), 2019, : 130 - 134