A reciprocity law for certain Frobenius extensions

被引:1
|
作者
Zhang, YL [1 ]
机构
[1] MATH SCI RES INST,BERKELEY,CA 94720
关键词
D O I
10.1090/S0002-9939-96-03603-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let E/F be a finite Galois extension of algebraic number fields with Galois group G. Assume that G is a Frobenius group and H is a Frobenius complement of G. Let F(H) be the maximal normal nilpotent subgroup of H. If H/F(H) is nilpotent, then every Artin L-function attached to an irreducible representation of G arises from an automorphic representation over F, i.e., the Langlands' reciprocity conjecture is true for such Galois extensions.
引用
收藏
页码:1643 / 1648
页数:6
相关论文
共 50 条