Emerging ocean observations for interdisciplinary data assimilation systems

被引:90
|
作者
Dickey, TD [1 ]
机构
[1] Univ Calif Santa Barbara, Ocean Phys Lab, Goleta, CA 93117 USA
关键词
observation system simulation experiments; data assimilation; sampling networks; SUBSPACE STATISTICAL ESTIMATION; PHYSICAL-BIOGEOCHEMICAL MODEL; CENTRAL EQUATORIAL PACIFIC; MARINE ECOSYSTEM MODEL; HARMFUL ALGAL BLOOMS; NORTH-ATLANTIC; MESOSCALE VARIABILITY; NUMERICAL-SIMULATION; FORECASTING SYSTEM; PLANKTON RECORDER;
D O I
10.1016/S0924-7963(03)00011-3
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Identification, understanding, and prediction of many interdisciplinary oceanographic processes remain as elusive goals of ocean science. However, new ocean technologies are being effectively used to increase the variety and numbers of sampled variables and thus to fill in the gaps of the time-space continuum of interdisciplinary ocean observations. The formulation, accuracy, and efficacy of data assimilative models are highly dependent upon the quality and quantity of interdisciplinary observational data. In turn, the design of optimal sampling networks will benefit from data assimilative-based observation system simulation experiments (OSSEs). The present contribution, which is directed toward both modelers and observationalists, reviews emerging interdisciplinary observational capabilities and their optimal utilization in data assimilative models. (C) 2003 Elsevier Science B.V All rights reserved.
引用
收藏
页码:5 / 48
页数:44
相关论文
共 50 条
  • [1] OCEAN DATA ASSIMILATION SYSTEMS FOR GODAE
    Cummings, James
    Bertino, Laurent
    Brasseur, Pierre
    Fukumori, Ichiro
    Kamachi, Masafumi
    Martin, Matthew J.
    Mogensen, Kristian
    Oke, Peter
    Testut, Charles Emmanuel
    Verron, Jacques
    Weaver, Anthony
    OCEANOGRAPHY, 2009, 22 (03) : 96 - 109
  • [2] Strongly Coupled Data Assimilation of Ocean Observations Into an Ocean-Atmosphere Model
    Tang, Q.
    Mu, L.
    Goessling, H. F.
    Semmler, T.
    Nerger, L.
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (24)
  • [3] Integrating Biogeochemistry and Ecology Into Ocean Data Assimilation Systems
    Brasseur, Pierre
    Gruber, Nicolas
    Barciela, Rosa
    Brander, Keith
    Doron, Maeva
    El Moussaoui, Abdelali
    Hobday, Alistair J.
    Huret, Martin
    Kremeur, Anne-Sophie
    Lehodey, Patrik
    Matear, Richard
    Moulin, Cyril
    Murtugudde, Raghu
    Senina, Inna
    Svendsen, Einar
    OCEANOGRAPHY, 2009, 22 (03) : 206 - 215
  • [4] Editorial: Data Assimilation of Nonlocal Observations in Complex Systems
    Hutt, A.
    Bocquet, M.
    Carrassi, A.
    Lei, L.
    Potthast, R.
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2021, 7
  • [5] Synthesis of Ocean Observations Using Data Assimilation for Operational, Real-Time and Reanalysis Systems: A More Complete Picture of the State of the Ocean
    Moore, Andrew M.
    Martini, Matthew J.
    Akella, Santha
    Arango, Hernan G.
    Balmaseda, Magdalena
    Bertino, Laurent
    Ciavatta, Stefano
    Cornuelle, Bruce
    Cummings, Jim
    Frolov, Sergey
    Lermusiaux, Pierre
    Oddo, Paolo
    Oke, Peter R.
    Storto, Andrea
    Teruzzi, Anna
    Vidard, Arthur
    Weaver, Anthony T.
    FRONTIERS IN MARINE SCIENCE, 2019, 6
  • [6] OBSERVATIONS AND DATA ASSIMILATION
    ATKINS, MJ
    WOODAGE, MJ
    METEOROLOGICAL MAGAZINE, 1985, 114 (1357): : 227 - 233
  • [7] How essential are Argo observations to constrain a global ocean data assimilation system?
    Turpin, V.
    Remy, E.
    Le Traon, P. Y.
    OCEAN SCIENCE, 2016, 12 (01) : 257 - 274
  • [8] Assimilating atmospheric observations into the ocean using strongly coupled ensemble data assimilation
    Sluka, Travis C.
    Penny, Stephen G.
    Kalnay, Eugenia
    Miyoshi, Takemasa
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (02) : 752 - 759
  • [9] Data assimilation in ocean models
    Anderson, DLT
    Sheinbaum, J
    Haines, K
    REPORTS ON PROGRESS IN PHYSICS, 1996, 59 (10) : 1209 - 1266
  • [10] ASSIMILATION OF DATA INTO OCEAN MODELS
    WEBB, DJ
    OCEANIC CIRCULATION MODELS : COMBINING DATA AND DYNAMICS, 1989, 284 : 233 - 256