DYNAMIC HYPERSPECTRAL EMBEDDING WITH A SPATIAL SENSITIVE GRAPH

被引:0
|
作者
Lunga, Dalton [1 ]
Ersoy, Okan [1 ]
机构
[1] Purdue Univ, Sch Elect & Comp Engn, W Lafayette, IN 47907 USA
关键词
CLASSIFICATION;
D O I
10.1109/IGARSS.2013.6723246
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Graph embedding techniques are useful to characterize spectral signature relations for hyperspectral images. However, such images consists of disjoint classes due to spatial details that are often ignored by existing graph computing tools. Robust parameter estimation is a challenge for kernel functions that compute such graphs. Finding a corresponding high quality coordinate system to map signature relations remains an open research question. We answer positively on these challenges by proposing a kernel function of spatial and spectral information in computing neighborhood graphs. Furthermore, a multidimensional artificial field graph embedding technique that relies on simple additive assumptions of pair-dependent attraction and repulsion functions is proposed. High quality visualizations and improved classification performance demonstrate the benefits of the approach.
引用
收藏
页码:2176 / 2179
页数:4
相关论文
共 50 条
  • [1] Embedding Learning on Spectral-Spatial Graph for Semisupervised Hyperspectral Image Classification
    Cao, Jiayan
    Wang, Bin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (10) : 1805 - 1809
  • [2] stDyer enables spatial domain clustering with dynamic graph embedding
    Ke Xu
    Yu Xu
    Zirui Wang
    Xin Maizie Zhou
    Lu Zhang
    Genome Biology, 26 (1)
  • [3] Incremental Graph Embedding Based on Spatial-Spectral Neighbors for Hyperspectral Image Classification
    Li, Dongqing
    Cheng, Yuhu
    Wang, Xuesong
    Yu, Qiang
    IEEE ACCESS, 2018, 6 : 10996 - 11006
  • [4] Dimensionality Reduction of Hyperspectral Image Using Spatial Regularized Local Graph Discriminant Embedding
    Hang, Renlong
    Liu, Qingshan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2018, 11 (09) : 3262 - 3271
  • [5] Location-Sensitive Embedding for Knowledge Graph Embedding
    Zhang S.
    Zhang W.
    Zhang, Wensheng (zhangwenshengia@hotmail.com), 1600, Institute of Computing Technology (33): : 913 - 919
  • [6] Spatial-Aware Collaboration-Competition Preserving Graph Embedding for Hyperspectral Image Classification
    Shah, Chiranjibi
    Du, Qian
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [7] Learning spatial-spectral dual adaptive graph embedding for multispectral and hyperspectral image fusion
    Wang, Xuquan
    Zhang, Feng
    Zhang, Kai
    Wang, Weijie
    Dun, Xiong
    Sun, Jiande
    PATTERN RECOGNITION, 2024, 151
  • [8] SPECTRAL TRANSFORMER WITH DYNAMIC SPATIAL SAMPLING AND GAUSSIAN POSITIONAL EMBEDDING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Feng, Jiaqi
    Luo, Xiaoyan
    Li, Sen
    Wang, Qixiong
    Yin, Jihao
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 3556 - 3559
  • [9] Spectral-spatial dynamic graph convolutional network for hyperspectral image classification
    Rong Chen
    Guanghui Li
    Chenglong Dai
    Earth Science Informatics, 2023, 16 : 3679 - 3695
  • [10] Spectral-spatial dynamic graph convolutional network for hyperspectral image classification
    Chen, Rong
    Li, Guanghui
    Dai, Chenglong
    EARTH SCIENCE INFORMATICS, 2023, 16 (04) : 3679 - 3695