Big data approaches in psychiatry: examples in depression research

被引:0
|
作者
Bzdok, D. [1 ,2 ,3 ]
Karrer, T. M. [1 ,2 ]
Habel, U. [1 ,2 ]
Schneider, F. [1 ,2 ]
机构
[1] Uniklin RWTH Aachen, Klin Psychiat Psychotherapie & Psychosomat, Pauwelstr 30, D-52074 Aachen, Germany
[2] Forschungszentrum Julich, JARA Inst Brain Struct Funct Relationship INM 10, Inst Neurowissensch & Med, Julich, Germany
[3] CEA Saclay, INRIA, Parietal Team, Neurospin, Bat 145, Gif Sur Yvette, France
来源
NERVENARZT | 2018年 / 89卷 / 08期
关键词
Biological subtypes; Personalized medicine; Prognosis; Machine learning; Endophenotypes; PREDICTION;
D O I
10.1007/s00115-017-0456-2
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The exploration and therapy of depression is aggravated by heterogeneous etiological mechanisms and various comorbidities. With the growing trend towards big data in psychiatry, research and therapy can increasingly target the individual patient. This novel objective requires special methods of analysis. The possibilities and challenges of the application of big data approaches in depression are examined in closer detail. Examples are given to illustrate the possibilities of big data approaches in depression research. Modern machine learning methods are compared to traditional statistical methods in terms of their potential in applications to depression. Big data approaches are particularly suited to the analysis of detailed observational data, the prediction of single data points or several clinical variables and the identification of endophenotypes. A current challenge lies in the transfer of results into the clinical treatment of patients with depression. Big data approaches enable biological subtypes in depression to be identified and predictions in individual patients to be made. They have enormous potential for prevention, early diagnosis, treatment choice and prognosis of depression as well as for treatment development.
引用
收藏
页码:869 / 874
页数:6
相关论文
共 50 条
  • [1] Big-Data-Ansätze in der Psychiatrie: Beispiele aus der DepressionsforschungBig data approaches in psychiatry: examples in depression research
    D. Bzdok
    T. M. Karrer
    U. Habel
    F. Schneider
    Der Nervenarzt, 2018, 89 (8) : 869 - 874
  • [2] Big Data Approaches in Heart Failure Research
    Jan D. Lanzer
    Florian Leuschner
    Rafael Kramann
    Rebecca T. Levinson
    Julio Saez-Rodriguez
    Current Heart Failure Reports, 2020, 17 : 213 - 224
  • [3] Is dementia research ready for big data approaches?
    Martin Hofmann-Apitius
    BMC Medicine, 13
  • [4] Big Data Approaches in Heart Failure Research
    Lanzer, Jan D.
    Leuschner, Florian
    Kramann, Rafael
    Levinson, Rebecca T.
    Saez-Rodriguez, Julio
    CURRENT HEART FAILURE REPORTS, 2020, 17 (05) : 213 - 224
  • [5] Big Data? Qualitative Approaches to Digital Research
    Whiting, Rebecca
    Pritchard, Katrina
    QUALITATIVE RESEARCH IN ORGANIZATIONS AND MANAGEMENT, 2015, 10 (03): : 296 - +
  • [6] Is dementia research ready for big data approaches?
    Hofmann-Apitius, Martin
    BMC MEDICINE, 2015, 13
  • [7] Big or Little Data for Magnetic Resonance Imaging Research in Psychiatry?
    Talati, Ardesheer
    van Dijk, Milenna T.
    Weissman, Myrna M.
    BIOLOGICAL PSYCHIATRY, 2023, 93 (01) : E1 - E2
  • [8] Big Data -Omics: Approaches for Genetics and Biological Research
    Hammond, Christopher J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [9] PREDICTOR RESEARCH IN PSYCHIATRY - NEUROPHYSIOLOGICAL EXAMPLES
    HEGERL, U
    STIEGLITZ, RD
    NERVENARZT, 1988, 59 (04): : 215 - 222
  • [10] Big Data Begin in Psychiatry
    Weissman, Myrna M.
    JAMA PSYCHIATRY, 2020, 77 (09) : 967 - 973