It is shown that the minimum cut ratio is within a factor of O(log k) of the maximum concurrent flow for k-commodity flow instances with arbitrary capacities and demands. This improves upon the previously best-known bound of O(log(2) k) and is existentially tight, up to a constant factor. An algorithm for finding a cut with ratio within a factor of O(log k) of the maximum concurrent flow, and thus of the optimal min-cut ratio, is presented.
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Microsoft Res, Quantum Architectures & Computat Grp, Redmond, WA 98052 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Cui, Shawn X.
Freedman, Michael H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Univ Calif Santa Barbara, Stn Q, Microsoft Res, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Freedman, Michael H.
Sattath, Or
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Sattath, Or
Stong, Richard
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Commun Res, La Jolla, CA 92121 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Stong, Richard
Minton, Greg
论文数: 0引用数: 0
h-index: 0
机构:
Ctr Commun Res, La Jolla, CA 92121 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA