Heterogeneous Attributed Network Embedding with Graph Convolutional Networks

被引:0
|
作者
Wang, Yueyang [1 ]
Duan, Ziheng [1 ]
Liao, Binbing [1 ]
Wu, Fei [1 ]
Zhuang, Yueting [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Network embedding which assigns nodes in networks to low-dimensional representations has received increasing attention in recent years. However, most existing approaches, especially the spectral-based methods, only consider the attributes in homogeneous networks. They are weak for heterogeneous attributed networks that involve different node types as well as rich node attributes and are common in real-world scenarios. In this paper, we propose HANE, a novel network embedding method based on Graph Convolutional Networks, that leverages both the heterogeneity and the node attributes to generate high-quality embeddings. The experiments on the real-world dataset show the effectiveness of our method.
引用
收藏
页码:10061 / 10062
页数:2
相关论文
共 50 条
  • [1] Heterogeneous Information Network Embedding with Convolutional Graph Attention Networks
    Cao, Meng
    Ma, Xiying
    Zhu, Kai
    Xu, Ming
    Wang, Chongjun
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [2] Collaborative Graph Neural Networks for Attributed Network Embedding
    Tan, Qiaoyu
    Zhang, Xin
    Huang, Xiao
    Chen, Hao
    Li, Jundong
    Hu, Xia
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (03) : 972 - 986
  • [3] Patient Similarity via Medical Attributed Heterogeneous Graph Convolutional Network
    Li, Yi
    Yang, Dan
    Gong, Xi
    IAENG International Journal of Computer Science, 2022, 49 (04)
  • [4] Attributed Multi-Order Graph Convolutional Network for Heterogeneous Graphs
    Chen, Zhaoliang
    Wu, Zhihao
    Zhong, Luying
    Plant, Claudia
    Wang, Shiping
    Guo, Wenzhong
    NEURAL NETWORKS, 2024, 174
  • [5] Multi-attributed heterogeneous graph convolutional network for bot detection
    Zhao, Jun
    Liu, Xudong
    Yan, Qiben
    Li, Bo
    Shao, Minglai
    Peng, Hao
    INFORMATION SCIENCES, 2020, 537 : 380 - 393
  • [6] Learning asymmetric embedding for attributed networks via convolutional neural network
    Radmanesh, Mohammadreza
    Ghorbanzadeh, Hossein
    Rezaei, Ahmad Asgharian
    Jalili, Mahdi
    Yu, Xinghuo
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 219
  • [7] Dynamic heterogeneous attributed network embedding
    Li, Hongbo
    Zheng, Wenli
    Tang, Feilong
    Song, Yitong
    Yao, Bin
    Zhu, Yanmin
    INFORMATION SCIENCES, 2024, 662
  • [8] Attributed Heterogeneous Graph Embedding with Meta-graph Attention
    Ouyang, Xinwang
    Chen, Hongmei
    Yang, Peizhong
    Wang, Lizhen
    Xiao, Qing
    WEB AND BIG DATA, APWEB-WAIM 2024, PT III, 2024, 14963 : 129 - 144
  • [9] Unsupervised Author Disambiguation using Heterogeneous Graph Convolutional Network Embedding
    Qiao, Ziyue
    Du, Yi
    Fu, Yanjie
    Wang, Pengfei
    Zhou, Yuanchun
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 910 - 919
  • [10] Spectral embedding network for attributed graph clustering
    Zhang, Xiaotong
    Liu, Han
    Wu, Xiao-Ming
    Zhang, Xianchao
    Liu, Xinyue
    NEURAL NETWORKS, 2021, 142 : 388 - 396