Structure-Aware Stochastic Storage Management in Smart Grids

被引:24
|
作者
Zhang, Yu [1 ]
van der Schaar, Mihaela [2 ]
机构
[1] Microsoft, Online Serv Div, Sunnyvale, CA 94085 USA
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
关键词
Energy storage; load scheduling; Markov decision process; post-decision state; smart grid; DEMAND-SIDE MANAGEMENT; ENERGY-STORAGE; OPTIMIZATION; GENERATION;
D O I
10.1109/JSTSP.2014.2346477
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Demand-side management has been proposed as an important solution for improving the energy consumption efficiency in smart grids. However, traditional pricing-based demand-side management methods usually rely on the assumption that the statistics of the system dynamics (e.g., the time-varying electricity price, the arrival distribution of consumers' demanded load) are known a priori, which does not hold in practice. In this paper, we propose a novel price-aware energy storage management algorithm for consumption scheduling which, unlike previous works, can operate optimally in systems where such statistical knowledge is unknown. We consider a power grid system where each consumer is equipped with an electrical energy storage device. Each consumer proactively determines how much energy to purchase from the energy producers by taking into consideration the time-varying and a priori unknown system dynamics, in order to maximize its own energy consumption utility. We first formulate the real-time energy storage management and demand response of the consumers as a Markov decision process and then propose an online learning algorithm that enables the consumers to learn the unknown system dynamics on-the-fly and have their energy storage management policies converge to the optimum. Our simulation results validate the efficacy of our algorithm, which helps consumers achieve higher average utility as opposed to other state-of-the-art online learning algorithms and energy storage management algorithms.
引用
收藏
页码:1098 / 1110
页数:13
相关论文
共 50 条
  • [1] Structure-aware Stochastic Load Management in Smart Grids
    Zhang, Yu
    van der Schaar, Mihaela
    2014 PROCEEDINGS IEEE INFOCOM, 2014, : 2643 - 2651
  • [2] Structure-Aware Stochastic Control for Transmission Scheduling
    Fu, Fangwen
    van der Schaar, Mihaela
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2012, 61 (09) : 3931 - 3945
  • [3] Structure-aware halftoning
    Pang, Wai-Man
    Qu, Yingge
    Wong, Tien-Tsin
    Cohen-Or, Daniel
    Heng, Pheng-Ann
    ACM TRANSACTIONS ON GRAPHICS, 2008, 27 (03):
  • [4] Parallel structure-aware halftoning
    Wu, Huisi
    Wong, Tien-Tsin
    Heng, Pheng-Ann
    MULTIMEDIA TOOLS AND APPLICATIONS, 2013, 67 (03) : 529 - 547
  • [5] Structure-Aware Hair Capture
    Luo, Linjie
    Li, Hao
    Rusinkiewicz, Szymon
    ACM TRANSACTIONS ON GRAPHICS, 2013, 32 (04):
  • [6] Structure-Aware Error Diffusion
    Chang, Jianghao
    Alain, Benoit
    Ostromoukhov, Victor
    ACM TRANSACTIONS ON GRAPHICS, 2009, 28 (05): : 1 - 8
  • [7] Structure-aware image fusion
    Li, Wen
    Xie, Yuange
    Zhou, Haole
    Han, Ying
    Zhan, Kun
    OPTIK, 2018, 172 : 1 - 11
  • [8] Structure-Aware Data Consolidation
    Wu, Shihao
    Bertholet, Peter
    Huang, Hui
    Cohen-Or, Daniel
    Gong, Minglun
    Zwicker, Matthias
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (10) : 2529 - 2537
  • [9] Structure-aware Visualization Retrieval
    Li, Haotian
    Wang, Yong
    Wu, Aoyu
    Wei, Huan
    Qu, Huamin
    PROCEEDINGS OF THE 2022 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI' 22), 2022,
  • [10] Structure-Aware Subspace Clustering
    Kou, Simin
    Yin, Xuesong
    Wang, Yigang
    Chen, Songcan
    Chen, Tieming
    Wu, Zizhao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (10) : 10569 - 10582