Malware Obfuscation Detection via Maximal Patterns

被引:2
|
作者
Li, Jian [1 ]
Xu, Ming [1 ]
Zheng, Ning [1 ]
Xu, Jian [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Comp Applicat Technol, Hangzhou, Zhejiang, Peoples R China
关键词
malware; obfuscation; maximal pattern; evolutionary similarity;
D O I
10.1109/IITA.2009.109
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Malware obfuscation is defined as a program transformation. It is always used in malware to evade detection from anti-malware software. In this paper, we propose a method to detect malware obfuscation using maximal patterns. Maximal pattern is a subsequence in malware's runtime system call sequence, which frequently appears in program execution, and can be used to describe the program specific behavior. The maximal pattern sequence is extracted from the malware's runtime system calls, and the similarity between two pattern sequences will be measured by evolutionary similarity. Based on the real-world malwares test data, the experiment results have shown that our method can efficiently detect malware obfuscation.
引用
收藏
页码:324 / 328
页数:5
相关论文
共 50 条
  • [1] Detection of obfuscation in java']java malware
    Kumar, Renuka
    Vaishakh, Anand Raj Essar
    [J]. 1ST INTERNATIONAL CONFERENCE ON INFORMATION SECURITY & PRIVACY 2015, 2016, 78 : 521 - 529
  • [2] Malware Obfuscation Measuring via Evolutionary Similarity
    Li, Jian
    Xu, Jun
    Xu, Ming
    Zhao, HengLi
    Zheng, Ning
    [J]. 2009 FIRST INTERNATIONAL CONFERENCE ON FUTURE INFORMATION NETWORKS, 2009, : 197 - +
  • [3] MoG: Behavior-Obfuscation Resistance Malware Detection
    Cheng, Binlin
    Liu, Jinjun
    Chen, Jiejie
    Shi, Shudong
    Peng, Xufu
    Zhang, Xingwen
    Hai, Haiqing
    [J]. Computer Journal, 2019, 62 (12): : 1734 - 1747
  • [4] BLADE: Robust malware detection against obfuscation in android
    Sihag, Vikas
    Vardhan, Manu
    Singh, Pradeep
    [J]. FORENSIC SCIENCE INTERNATIONAL-DIGITAL INVESTIGATION, 2021, 38
  • [5] BLADE: Robust malware detection against obfuscation in android
    Sihag, Vikas
    Vardhan, Manu
    Singh, Pradeep
    [J]. Forensic Science International: Digital Investigation, 2021, 38
  • [6] MoG: Behavior-Obfuscation Resistance Malware Detection
    Cheng, Binlin
    Liu, Jinjun
    Chen, Jiejie
    Shi, Shudong
    Peng, Xufu
    Zhang, Xingwen
    Hai, Haiqing
    [J]. COMPUTER JOURNAL, 2019, 62 (12): : 1734 - 1747
  • [7] Obfuscation: The Hidden Malware
    O'Kane, Philip
    Sezer, Sakir
    McLaughlin, Kieran
    [J]. IEEE SECURITY & PRIVACY, 2011, 9 (05) : 41 - 47
  • [8] Obfusifier: Obfuscation-Resistant Android Malware Detection System
    Li, Zhiqiang
    Sun, Jun
    Yan, Qiben
    Srisa-an, Witawas
    Tsutano, Yutaka
    [J]. SECURITY AND PRIVACY IN COMMUNICATION NETWORKS, SECURECOMM, PT I, 2019, 304 : 214 - 234
  • [9] Use of cryptography in malware obfuscation
    Asghar, Hassan Jameel
    Zhao, Benjamin Zi Hao
    Ikram, Muhammad
    Nguyen, Giang
    Kaafar, Dali
    Lamont, Sean
    Coscia, Daniel
    [J]. JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2024, 20 (01) : 135 - 152
  • [10] Use of cryptography in malware obfuscation
    Hassan Jameel Asghar
    Benjamin Zi Hao Zhao
    Muhammad Ikram
    Giang Nguyen
    Dali Kaafar
    Sean Lamont
    Daniel Coscia
    [J]. Journal of Computer Virology and Hacking Techniques, 2024, 20 : 135 - 152