Electrical Circuits RC, LC, and RLC under Generalized Type Non-Local Singular Fractional Operator

被引:19
|
作者
Acay, Bahar [1 ]
Inc, Mustafa [1 ,2 ]
机构
[1] Firat Univ, Sci Fac, Dept Math, TR-23119 Elazig, Turkey
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 406040, Taiwan
关键词
physical problems; fractional derivatives; fractional modeling; real-world problems; electrical circuits;
D O I
10.3390/fractalfract5010009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The current study is of interest when performing a useful extension of a crucial physical problem through a non-local singular fractional operator. We provide solutions that include three arbitrary parameters alpha, rho, and gamma for the Resistance-Capacitance (RC), Inductance-Capacitance (LC), and Resistance-Inductance-Capacitance (RLC) electric circuits utilizing a generalized type fractional operator in the sense of Caputo, called non-local M-derivative. Additionally, to keep the dimensionality of the physical parameter in the proposed model, we use an auxiliary parameter. Owing to the fact that all solutions depend on three parameters unlike the other solutions containing one or two parameters in the literature, the solutions obtained in this study have more general results. On the other hand, in order to observe the advantages of the non-local M-derivative, a comprehensive comparison is carried out in the light of experimental data. We make this comparison for the RC circuit between the non-local M-derivative and Caputo derivative. It is clearly shown on graphs that the fractional M-derivative behaves closer to the experimental data thanks to the added parameters alpha, rho, and gamma.
引用
收藏
页码:1 / 18
页数:18
相关论文
共 50 条
  • [1] NEHARI MANIFOLD FOR A SINGULAR FRACTIONAL PROBLEM DRIVEN BY A GENERAL NON-LOCAL INTEGRODIFFERENTIAL OPERATOR
    Chammem, Rym
    Ghanmi, Abdeljabbar
    Mechergui, Mahfoudh
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2025,
  • [2] Fractional operator without singular kernel: Applications to linear electrical circuits
    Morales-Delgado, Victor F.
    Gomez-Aguilar, Jose F.
    Taneco-Hernandez, Marco A.
    Escobar-Jimenez, Ricardo F.
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2018, 46 (12) : 2394 - 2419
  • [3] A comparative analysis of the RC circuit with local and non-local fractional derivatives
    Rosales, J. J.
    Filoteo, J. D.
    Gonzalez, A.
    REVISTA MEXICANA DE FISICA, 2018, 64 (06) : 647 - 654
  • [4] Kirchhoff-type problems with the non-local fractional d(z,.)-Laplacian operator
    Yahiaoui, Ahlem
    Rezaoui, Med-Salem
    Djidel, Omar
    Guefaifia, Rafik
    Boulaaras, Salah
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2025, 2025 (01):
  • [5] An Inverse Source Non-local Problem for a Mixed Type Equation with a Caputo Fractional Differential Operator
    Karimov, E.
    Al-Salti, N.
    Kerbal, S.
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2017, 7 (02) : 417 - 438
  • [6] A novel method for a fractional derivative with non-local and non-singular kernel
    Akgul, Ali
    CHAOS SOLITONS & FRACTALS, 2018, 114 : 478 - 482
  • [7] Numerical Computation of a Fractional Derivative with Non-Local and Non-Singular Kernel
    Djida, J. D.
    Atangana, A.
    Area, I.
    MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2017, 12 (03) : 4 - 13
  • [8] Electrical circuits RC, LC, and RL described by Atangana-Baleanu fractional derivatives
    Gomez-Aguilar, J. F.
    Atangana, Abdon
    Morales-Delgado, V. F.
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2017, 45 (11) : 1514 - 1533
  • [9] On a Generalized Wave Equation with Fractional Dissipation in Non-Local Elasticity
    Atanackovic, Teodor M.
    Djekic, Diana Dolicanin
    Gilic, Ersin
    Kacapor, Enes
    MATHEMATICS, 2023, 11 (18)
  • [10] Numerical study for the fractional RL, RC, and RLC electrical circuits using Legendre pseudo-spectral method
    Khader, M. M.
    Gomez-Aguilar, J. F.
    Adel, M.
    INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2021, 49 (10) : 3266 - 3285