Robust environmental change detection using PTZ camera via spatial-temporal probabilistic modeling

被引:7
|
作者
Hu, Jwu-Sheng [1 ]
Su, Tzung-Min [1 ]
机构
[1] Natl Chiao Tung Univ, Dept Elect & Control Engn, Hsinchu 300, Taiwan
关键词
Gaussian distributions; machine vision; pattern recognition; surveillance;
D O I
10.1109/TMECH.2007.897280
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a novel procedure for detecting environmental changes by using a pan-tilt-zoom (PTZ) camera. Conventional approaches based on pixel space and stationary cameras need time-consuming image registration to yield pixel statistics. This work proposes an alternative approach to describe each scene with a Gaussian mixture model (GMM) via a spatial-temporal statistical method. Although details of the environment covered by the camera are lost; this model is efficient and robust in recognizing scene and detecting scene changes in the environment. Moreover, the threshold selection for separating different environmental changes is convenient by using the proposed framework. The effectiveness of the proposed method is demonstrated experimentally in an office environment.
引用
收藏
页码:339 / 344
页数:6
相关论文
共 50 条
  • [1] Robust environmental change detection using PTZ camera via spatial-temporal probabilistic modeling
    Hu, JS
    Su, TM
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS, 2005, : 50 - 55
  • [2] Anomaly Detection based on Robust Spatial-temporal Modeling for Industrial Control Systems
    Li, Shijie
    Liu, Junjiao
    Pan, Zhiwen
    Lv, Shichao
    Si, Shuaizong
    Sun, Limin
    [J]. 2022 IEEE 19TH INTERNATIONAL CONFERENCE ON MOBILE AD HOC AND SMART SYSTEMS (MASS 2022), 2022, : 355 - 363
  • [3] Action change detection in video using a bilateral spatial-temporal constraint
    Tian, Jing
    Chen, Li
    [J]. INTERNATIONAL JOURNAL OF ELECTRONICS, 2016, 103 (08) : 1279 - 1286
  • [4] Spatial-temporal change of the geomagnetic field: environmental aspect
    Orlyuk, M., I
    Romenets, A. A.
    [J]. GEOFIZICHESKIY ZHURNAL-GEOPHYSICAL JOURNAL, 2020, 42 (04): : 18 - 38
  • [5] Abstract Spatial-Temporal Reasoning via Probabilistic Abduction and Execution
    Zhang, Chi
    Jia, Baoxiong
    Zhu, Song-Chun
    Zhu, Yixin
    [J]. 2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9731 - 9741
  • [6] Spatial-temporal Causal Modeling for Climate Change Attribution
    Lozano, A.
    Li, H.
    Niculescu-Mizil, A.
    Liu, Y.
    Perlich, C.
    Hosking, J.
    Abe, N.
    [J]. KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 587 - 595
  • [7] Modeling spatial-temporal change of Poyang Lake using multi-temporal Landsat imagery
    Hui, Fengming
    Xu, Bing
    Huang, Huabing
    Gong, Peng
    [J]. GEOINFORMATICS 2007: REMOTELY SENSED DATA AND INFORMATION, PTS 1 AND 2, 2007, 6752
  • [8] Robust spatial-temporal deep model for multimedia event detection
    Yu, Litao
    Sun, Xiaoshuai
    Huang, Zi
    [J]. NEUROCOMPUTING, 2016, 213 : 48 - 53
  • [9] Fire Detection Using Spatial-temporal Analysis
    Chen, Liang-Hua
    Huang, Wei-Cheng
    [J]. WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL III, 2013, : 2222 - 2225
  • [10] Modeling of Multiple Spatial-Temporal Relations for Robust Visual Object Tracking
    Wang, Shilei
    Wang, Zhenhua
    Sun, Qianqian
    Cheng, Gong
    Ning, Jifeng
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5073 - 5085