Ocean surface current retrieval from space: The Sentinel-2 multispectral capabilities

被引:21
|
作者
Yurovskaya, Maria [1 ,2 ]
Kudryavtsev, Vladimir [1 ,2 ]
Chapron, Bertrand [2 ,3 ]
Collard, Fabrice [4 ]
机构
[1] RAS, Marine Hydrophys Inst, Sevastopol, Russia
[2] Russian State Hydrometeorol Univ, Satellite Oceanog Lab, St Petersburg, Russia
[3] IFREMER, Plouzane, France
[4] OceanDataLab, Deolen, France
基金
俄罗斯科学基金会;
关键词
Ocean currents; Sea surface optical images; Wave dispersion relation; Time lag; Wave breaking; Sentinel-2; Satellite methods; SUN GLITTER IMAGERY; SPECTRUM RETRIEVAL; WAVE SPECTRUM; AIRBORNE; FIELD;
D O I
10.1016/j.rse.2019.111468
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Sentinel-2 MultiSpectral Instrument (MSI) collects multiple spectral band images, corresponding to specific sensing wavelengths and spatial resolutions, i.e. 10 m, 20 m and 60 m, respectively. Images are collected one at the time with a given time-lag between observations. Under favorable conditions, spatio-temporal characteristics of propagating ocean surface waves can thus uniquely be retrieved. A method for surface current vector field reconstruction is then developed. Demonstrated over different deep ocean regions, the retrieved surface current fields well compare with medium-resolution ocean circulation model or derived-velocities from altimeter measurements. At finer scales, the surface wave-conservation law is recovered, with the associated relationship between current vorticity and wave-ray curvature. Over shallow water regions, the wave propagation properties well follow sea depth variations, consistent with ETOPO1 data. Finally, time-lag between detector bands can also be exploited to estimate speed and direction properties of detected surface wave breaking whitecaps. An analysis of velocity reconstruction errors further reveals that Sentinel-2 MSI inter-channel co-registration is realized with an accuracy better than 0.1 pixel. Overall, these results confirm very promising capabilities of optical imagery to provide direct surface current velocity measurements from space, over relatively large areas, O(100 km), with a spatial resolution down to O(1 km).
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Retrieval of soil salinity from Sentinel-2 multispectral imagery
    Taghadosi, Mohammad Mahdi
    Hasanlou, Mahdi
    Eftekhari, Kamran
    EUROPEAN JOURNAL OF REMOTE SENSING, 2019, 52 (01) : 138 - 154
  • [2] RETRIEVAL OF AEROSOL OPTICAL DEPTH IN BEIJING AREA FROM SENTINEL-2 MULTISPECTRAL INSTRUMENT DATA
    Chen, Fang
    Li, Yingjie
    Ma, Qingmiao
    Cui, Peipei
    Qiao, Jiaxuan
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6702 - 6705
  • [3] ESTIMATION OF SURFACE SNOW WETNESS USING SENTINEL-2 MULTISPECTRAL DATA
    Varade, Divyesh
    Dikshit, Onkar
    ISPRS TC V MID-TERM SYMPOSIUM GEOSPATIAL TECHNOLOGY - PIXEL TO PEOPLE, 2018, 4-5 : 223 - 228
  • [4] Retrieval of lake water surface albedo from Sentinel-2 remote sensing imagery
    Du, Jia
    Zhou, Haohao
    Jacinthe, Pierre-Andre
    Song, Kaishan
    JOURNAL OF HYDROLOGY, 2023, 617
  • [5] Survey of current hyperspectral Earth observation applications from space and synergies with Sentinel-2
    Transon, Julie
    d'Andrimont, Raphael
    Maugnard, Alexandre
    Defourny, Pierre
    2017 9TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTITEMP), 2017,
  • [6] SUPERRESOLVING SENTINEL-2 USING LEARNED MULTISPECTRAL REGULARIZATION
    Armannsson, Sveinn E.
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Sigurdsson, Jakob
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7435 - 7438
  • [7] SENTINEL-2 MULTISPECTRAL IMAGER (MSI) AND CALIBRATION/VALIDATION
    Martimort, Philippe
    Fernandez, Valerie
    Kirschner, Volker
    Isola, Claudia
    Meygret, Aime
    2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6999 - 7002
  • [8] Identification of the best method for detecting surface water in Sentinel-2 multispectral satellite imagery
    Kirby, Katelyn
    Ferguson, Sean
    Rennie, Colin D.
    Cousineau, Julien
    Nistor, Ioan
    REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2024, 36
  • [9] Unsupervised Deep Learning for Landslide Detection from Multispectral Sentinel-2 Imagery
    Shahabi, Hejar
    Rahimzad, Maryam
    Piralilou, Sepideh Tavakkoli
    Ghorbanzadeh, Omid
    Homayouni, Saied
    Blaschke, Thomas
    Lim, Samsung
    Ghamisi, Pedram
    REMOTE SENSING, 2021, 13 (22)
  • [10] Doppler Centroid Estimation for Ocean Surface Current Retrieval from Sentinel-1 SAR Data
    Iqbal, Muhammad Amjad
    Anghel, Andrei
    Dateu, Mihai
    2021 18TH EUROPEAN RADAR CONFERENCE (EURAD), 2021, : 429 - 432