Obstacle problem for a non-convex fully nonlinear operator

被引:6
|
作者
Lee, Ki-Ahm [1 ,2 ]
Park, Jinwan [1 ]
机构
[1] Seoul Natl Univ, Seoul 08826, South Korea
[2] Korea Inst Adv Study, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
Free boundary problem; Obstacle problem; Regularity of free boundary; Non-convex fully nonlinear operator; Evans-Krylov theorem; FREE-BOUNDARY PROBLEMS; MONGE-AMPERE EQUATION; ELLIPTIC-EQUATIONS; REGULARITY;
D O I
10.1016/j.jde.2018.07.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study a priori C-2,C-alpha estimate up to the boundary for F(D(2)u) = 0 and the regularity of the free boundary of the obstacle problem for fully nonlinear operator under specific conditions for the operator and level sets of the operator. The conditions are variations of conditions for the zero set of the operator in [7]. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:5809 / 5830
页数:22
相关论文
共 50 条
  • [1] The regularity theory for the double obstacle problem for fully nonlinear operator
    Lee, Ki-Ahm
    Park, Jinwan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2023, 235
  • [2] THE OBSTACLE PROBLEM FOR MONGE-AMPERE TYPE EQUATIONS IN NON-CONVEX DOMAINS
    Xiong, Jingang
    Bao, Jiguang
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2011, 10 (01) : 59 - 68
  • [3] Non-Convex Feature Learning via Operator
    Kong, Deguang
    Ding, Chris
    [J]. PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1918 - 1924
  • [4] MINIMAX THEOREMS IN A FULLY NON-CONVEX SETTING
    Ricceri, Biagio
    [J]. JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2019, 3 (01): : 45 - 52
  • [5] NON-CONVEX GENERALIZATION OF THE CIRCLE PROBLEM
    NOWAK, WG
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1980, 314 : 136 - 145
  • [6] The convex envelope is the solution of a nonlinear obstacle problem
    Oberman, Adam M.
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (06) : 1689 - 1694
  • [7] Solving a nonlinear non-convex trim loss problem with a genetic hybrid algorithm
    Östermark, R
    [J]. COMPUTERS & OPERATIONS RESEARCH, 1999, 26 (06) : 623 - 635
  • [8] Nonlinear Non-convex Optimization of Hydraulic Networks
    Tahavori, Maryamsadat
    Kallesoe, Carsten
    Leth, John
    Wisniewski, Rafael
    [J]. 2013 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA), 2013, : 894 - 898
  • [9] VARIATIONAL PROBLEM IN DUALITY FOR NON-CONVEX CASES
    EKELAND, I
    LASRY, JM
    [J]. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1980, 291 (08): : 493 - 496
  • [10] On the Newton aerodynamic problem for non-convex bodies
    Aleksenko, A. I.
    Plakhov, A. Yu.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2008, 63 (05) : 959 - 961