Semi-stable models for rigid-analytic spaces

被引:9
|
作者
Hartl, UT [1 ]
机构
[1] Univ Freiburg, Inst Math, D-79104 Freiburg, Germany
关键词
D O I
10.1007/s00229-002-0349-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a complete discrete valuation ring with field of fractions K and let X-K be a smooth, quasi-compact rigid-analytic space over Sp K. We show that there exists a finite separable field extension K' of K, a rigid-analytic space X'(K') over Sp K' having a strictly semi-stable formal model over the ring of integers of K', and an etale, surjective morphism f : X'(K') --> X-K of rigid-analytic spaces over Sp K. This is different from the alteration result of A.J. de Jong [dJ] who does not obtain that f is etale. To achieve this property we have to work locally on X-K, i.e. our f is not proper and hence not an alteration.
引用
收藏
页码:365 / 380
页数:16
相关论文
共 50 条