Infinitesimal Robustness for Diffusions

被引:7
|
作者
La Vecchia, Davide [1 ]
Trojani, Fabio [1 ]
机构
[1] Univ Lugano, Fac Econ, CH-6900 Lugano, Switzerland
基金
瑞士国家科学基金会;
关键词
Diffusion processes; Eigenexpansion; Infinitesimal generator; Influence function; M-estimators; Saddlepoint approximation; EXCHANGE-RATES; ESTIMATORS; MODELS; INFERENCE;
D O I
10.1198/jasa.2010.tm08383
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop infinitesimally robust statistical procedures for the general diffusion processes. We first prove the existence and uniqueness of the times-series influence function of conditionally unbiased M-estimators for ergodic and stationary diffusions, under weak conditions on the (martingale) estimating function used. We then characterize the robustness of M-estimators for diffusions and derive a class of conditionally unbiased optimal robust estimators. To compute these estimators, we propose a general algorithm, which exploits approximation methods for diffusions in the computation of the robust estimating function. Monte Carlo simulation shows a good performance of our robust estimators and an application to the robust estimation of the exchange rate dynamics within a target zone illustrates the methodology in a real-data application.
引用
收藏
页码:703 / 712
页数:10
相关论文
共 50 条