A common jump factor stochastic volatility model

被引:4
|
作者
Laurini, Marcio Poletti [1 ]
Mauad, Roberto Baltieri [1 ]
机构
[1] FEA RP USP, Dept Econ, Ribeirao Preto, Brazil
关键词
Stochastic volatility; MCMC; Jump process; Regime changes; LEVEL SHIFTS;
D O I
10.1016/j.frl.2014.12.009
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We introduce a new multivariate stochastic volatility model, based on the presence of a latent common factor with random jumps. The common factor is parameterized as a permanent component using a compound binomial process. This model can capture common jumps in the latent volatilities between markets, with particular relevance in the presence of crises and contagion in emerging markets. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:2 / 10
页数:9
相关论文
共 50 条
  • [1] A subdiffusive stochastic volatility jump model
    Dupret, Jean-Loup
    Hainaut, Donatien
    [J]. QUANTITATIVE FINANCE, 2021,
  • [2] A subdiffusive stochastic volatility jump model
    Dupret, Jean-Loup
    Hainaut, Donatien
    [J]. QUANTITATIVE FINANCE, 2023, 23 (06) : 979 - 1002
  • [3] Option Pricing under Two-Factor Stochastic Volatility Jump-Diffusion Model
    Deng, Guohe
    [J]. COMPLEXITY, 2020, 2020
  • [4] STOCHASTIC VOLATILITY MODEL WITH CORRELATED JUMP SIZES AND INDEPENDENT ARRIVALS
    Chen, Pengzhan
    Ye, Wuyi
    [J]. PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2021, 35 (03) : 513 - 531
  • [5] KERNEL WEIGHTED VOLATILITY ESTIMATION FOR STOCHASTIC DIFFUSION MODEL WITH JUMP
    Ying, Guobing
    Yang, Shanchao
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 64 (02) : 203 - 235
  • [6] A binomial option pricing model under stochastic volatility and jump
    Chang, CC
    Fu, HC
    [J]. CANADIAN JOURNAL OF ADMINISTRATIVE SCIENCES-REVUE CANADIENNE DES SCIENCES DE L ADMINISTRATION, 2001, 18 (03): : 192 - 203
  • [7] A Threshold Factor Multivariate Stochastic Volatility Model
    So, Mike K. P.
    Choi, C. Y.
    [J]. JOURNAL OF FORECASTING, 2009, 28 (08) : 712 - 735
  • [8] Long memory version of stochastic volatility jump-diffusion model with stochastic intensity
    Fallah, Somayeh
    Mehrdoust, Farshid
    [J]. ESTUDIOS DE ECONOMIA APLICADA, 2020, 38 (02):
  • [9] Common-factor stochastic volatility modelling with observable proxy
    Fang, Yizhou
    Lysy, Martin
    Mcleish, Don
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2020, 48 (01): : 36 - 61
  • [10] Stochastic volatility double-jump-diffusions model: the importance of distribution type of jump amplitude
    Sun, Youfa
    Liu, Caiyan
    Guo, Shimin
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2017, 94 (05) : 989 - 1014