Inferences for Weibull Frechet Distribution Using a Bayesian and Non-Bayesian Methods on Gastric Cancer Survival Times

被引:5
|
作者
EL-Sagheer, Rashad M. [1 ]
Shokr, Ethar M. [2 ]
Mahmoud, Mohamed A. W. [1 ]
El-Desouky, Beih S. [2 ]
机构
[1] Al Azhar Univ, Fac Sci, Math Dept, Cairo 11884, Egypt
[2] Mansoura Univ, Fac Sci, Math Dept, Mansoura 35516, Egypt
关键词
MODEL;
D O I
10.1155/2021/9965856
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, based on progressively type-II censored schemes, the maximum likelihood, Bayes, and two parametric bootstrap methods are used for estimating the unknown parameters of the Weibull Frechet distribution and some lifetime indices as reliability and hazard rate functions. Moreover, approximate confidence intervals and asymptotic variance-covariance matrix have been obtained. Markov chain Monte Carlo technique based on Gibbs sampler within Metropolis-Hasting algorithm is used to generate samples from the posterior density functions. Furthermore, Bayesian estimate is computed under both balanced square error loss and balanced linear exponential loss functions. Simulation results have been implemented to obtain the accuracy of the estimators. Finally, application on the survival times in years of a group of patients given chemotherapy and radiation treatment is presented for illustrating all the inferential procedures developed here.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] BAYESIAN AND NON-BAYESIAN ESTIMATORS USING RECORD STATISTICS OF THE MODIFIED-INVERSE WEIBULL DISTRIBUTION
    Panaitescu, Eugenia
    Popescu, Pantelimon George
    Cozma, Pompiliea
    Popa, Mariana
    [J]. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2010, 11 (03): : 224 - 231
  • [2] Bayesian and Non-Bayesian Inference for Survival Data Using Generalised Exponential Distribution
    Guure, Chris Bambey
    Bosomprah, Samuel
    [J]. JOURNAL OF PROBABILITY AND STATISTICS, 2013, 2013
  • [3] BAYESIAN AND NON-BAYESIAN METHODS OF INFERENCE
    SMALL, RD
    SCHOR, SS
    [J]. ANNALS OF INTERNAL MEDICINE, 1983, 99 (06) : 857 - 859
  • [4] Non-Bayesian estimation of Weibull Lindley burr XII distribution
    Amer, Etab Kazem
    Hassan, Nabeel J.
    Jassim, Hassan Kamil
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 (02): : 977 - 989
  • [5] Optimizing analgesic pain relief time analysis through Bayesian and non-Bayesian approaches to new right truncated Frechet-inverted Weibull distribution
    Nader, Nora
    Ramadan, Dina A.
    Ahmad, Hanan Haj
    El-Damcese, M. A.
    El-Desouky, B. S.
    [J]. AIMS MATHEMATICS, 2023, 8 (12): : 31217 - 31245
  • [6] The Discrete Analogue of the Weibull G Family: Properties, Different Applications, Bayesian and Non-Bayesian Estimation Methods
    Ibrahim M.
    Ali M.M.
    Yousof H.M.
    [J]. Annals of Data Science, 2023, 10 (04) : 1069 - 1106
  • [7] Bayesian and non-Bayesian reliability estimation of multicomponent stress-strength model for unit Weibull distribution
    Alotaibi, Refah Mohammed
    Tripathi, Yogesh Mani
    Dey, Sanku
    Rezk, Hoda Ragab
    [J]. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01): : 1164 - 1181
  • [8] Comparison of estimates using record statistics from Weibull model: Bayesian and non-Bayesian approaches
    Soliman, Ahmed A.
    Abd Ellah, A. H.
    Sultan, K. S.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (03) : 2065 - 2077
  • [9] Dynamic cumulative residual Renyi entropy for Lomax distribution: Bayesian and non-Bayesian methods
    Al-Babtain, Abdulhakim A.
    Hassan, Amal S.
    Zaky, Ahmed N.
    Elbatal, Ibrahim
    Elgarhy, Mohammed
    [J]. AIMS MATHEMATICS, 2021, 6 (04): : 3889 - 3914
  • [10] Bayesian and non-Bayesian inferences of the Burr-XII distribution for progressive first-failure censored data
    Ahmed A. Soliman
    N. A. Abou-elheggag
    A. H. Abd ellah
    A. A. Modhesh
    [J]. METRON, 2012, 70 (1) : 1 - 25