Predicting COVID-19 from Chest X-ray Images using a New Deep Learning Architecture

被引:0
|
作者
Oraibi, Zakariya A. [1 ]
Albasri, Safaa [2 ]
机构
[1] Univ Basrah, Dept Comp Sci, Coll Educ Pure Sci, Basrah, Iraq
[2] Mustansiriyah Univ, Dept Elect Engn, Coll Engn, Baghdad, Iraq
关键词
COVID-19; Convolutional Neural Networks; Image Classification;
D O I
10.1109/AIPR57179.2022.10092231
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The spread of coronavirus disease in late 2019 caused huge damage to human lives and forced a chaos in health care systems around the globe. Early diagnosis of this disease can help separate patients from healthy people. Therefore, precise COVID-19 detection is necessary to prevent the spread of this virus. Many artificial intelligent technologies for example deep learning models have been applied successfully for this task by employing chest X-ray images. In this paper, we propose to classify chest X-ray images using a new end-to-end convolutional neural network model. This new model consists of six convolutional blocks. Each block consists of one convolutional layer, one ReLU layer, and one max-pooling layer. The new model was applied on a challenging imbalanced COVID-19 dataset of 5000 images, divided into two classes, COVID and Non-COVID. In experiments, the input image is first resized to 256 x 256 x 3 before being fed to the model. Two metrics were used to test our new model: sensitivity and specificity. A sensitivity rate of 97% was achieved along with a specificity rate of 99.32%. These results are promising when compared to other deep learning models applied on the same dataset.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning
    Minaee, Shervin
    Kafieh, Rahele
    Sonka, Milan
    Yazdani, Shakib
    Soufi, Ghazaleh Jamalipour
    [J]. MEDICAL IMAGE ANALYSIS, 2020, 65
  • [2] Identification of COVID-19 with Chest X-ray Images using Deep Learning
    Khandar, Punam
    Thaokar, Chetana
    [J]. INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2021, 12 (05): : 694 - 700
  • [3] COVIDNet: An Automatic Architecture for COVID-19 Detection With Deep Learning From Chest X-Ray Images
    He, Lang
    Tiwari, Prayag
    Su, Rui
    Shi, Xiuying
    Marttinen, Pekka
    Kumar, Neeraj
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (13) : 11376 - 11384
  • [4] Covid-19 detection on x-ray images using a deep learning architecture
    Akgul, Ismail
    Kaya, Volkan
    Unver, Edhem
    Karavas, Erdal
    Baran, Ahmet
    Tuncer, Servet
    [J]. JOURNAL OF ENGINEERING RESEARCH, 2023, 11 (2B): : 15 - 26
  • [5] Covid-19 Detection in Chest X-ray Images with Deep Learning
    Ozdemir, Zeynep
    Yalim Keles, Hacer
    [J]. 29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [6] COVID-19 Detection in Chest X-ray Images using a Deep Learning Approach
    Saiz, Fatima A.
    Barandiaran, Inigo
    [J]. INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2020, 6 (02): : 11 - 14
  • [7] A Deep Learning Approach for Detecting Covid-19 Using the Chest X-Ray Images
    Sadeghi, Fatemeh
    Rostami, Omid
    Yi, Myung-Kyu
    Hwang, Seong Oun
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (01): : 751 - 768
  • [8] Deep Learning Algorithm for COVID-19 Classification Using Chest X-Ray Images
    Sharmila, V. J.
    Florinabel, Jemi D.
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [9] Improved COVID-19 detection with chest x-ray images using deep learning
    Vedika Gupta
    Nikita Jain
    Jatin Sachdeva
    Mudit Gupta
    Senthilkumar Mohan
    Mohd Yazid Bajuri
    Ali Ahmadian
    [J]. Multimedia Tools and Applications, 2022, 81 : 37657 - 37680
  • [10] COVID-19 Detection Using Deep Learning Algorithm on Chest X-ray Images
    Akter, Shamima
    Shamrat, F. M. Javed Mehedi
    Chakraborty, Sovon
    Karim, Asif
    Azam, Sami
    [J]. BIOLOGY-BASEL, 2021, 10 (11):