Diophantine tori and spectral asymptotics for nonselfadjoint operators

被引:0
|
作者
Hitrik, Michael [1 ]
Sjostrand, Johannes
Ngoc, San Vu
机构
[1] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[2] Ecole Polytech, Ctr Math, FR-91128 Palaiseau, France
[3] CNRS, UMR 7640, Palaiseau, France
[4] Univ Grenoble 1, CNRS, UMR 5582, Inst Fourier, F-38402 St Martin Dheres, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study spectral asymptotics for small nonselfadjoint perturbations of selfadjoint h-pseudodifferential operators in dimension 2, assuming that the classical flow of the unperturbed part possesses several invariant Lagrangian tori enjoying a Diophantine property. We get complete asymptotic expansions for all eigenvalues in certain rectangles in the complex plane in two different cases: in the first case, we assume that the strength E of the perturbation is O(h(delta)) for some delta > 0 and is bounded from below by a fixed positive power of h. In the second case, E is assumed to be sufficiently small but independent of h, and we describe the eigenvalues completely in a fixed h-independent domain in the complex spectral plane.
引用
收藏
页码:105 / 182
页数:78
相关论文
共 50 条