Collocation and finite difference-collocation methods for the solution of nonlinear Klein-Gordon equation

被引:66
|
作者
Lakestani, Mehrdad [2 ]
Dehghan, Mehdi [1 ]
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran 15914, Iran
[2] Univ Tabriz, Fac Math Sci, Tabriz, Iran
关键词
Cubic B-spline function; Nonlinear Klein-Gordon; Operational matrix of derivative; BOUNDARY VALUE-PROBLEM; NUMERICAL-SOLUTION; DECOMPOSITION METHOD; SUBJECT;
D O I
10.1016/j.cpc.2010.04.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Two numerical techniques based on the finite difference and collocation methods are presented for the solution of nonlinear Klein-Gordon equation. The operational matrix of derivative for the cubic B-spline scaling functions is presented and is utilized to reduce the solution of nonlinear Klein-Gordon equation to the solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the new techniques. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1392 / 1401
页数:10
相关论文
共 50 条
  • [1] A collocation method for generalized nonlinear Klein-Gordon equation
    Ben-Yu Guo
    Zhong-Qing Wang
    [J]. Advances in Computational Mathematics, 2014, 40 : 377 - 398
  • [2] A collocation method for generalized nonlinear Klein-Gordon equation
    Guo, Ben-Yu
    Wang, Zhong-Qing
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (02) : 377 - 398
  • [3] A spline collocation approach for the numerical solution of a generalized nonlinear Klein-Gordon equation
    Khuri, S. A.
    Sayfy, A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (04) : 1047 - 1056
  • [4] FOURIER COLLOCATION METHOD FOR SOLVING NONLINEAR KLEIN-GORDON EQUATION
    CAO, WM
    GUO, BY
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1993, 108 (02) : 296 - 305
  • [5] FINITE DIFFERENCE SOLUTION OF A NONLINEAR KLEIN-GORDON EQUATION WITH AN EXTERNAL SOURCE
    Berikelashvili, G.
    Jokhadze, O.
    Kharibegashvili, S.
    Midodashvili, B.
    [J]. MATHEMATICS OF COMPUTATION, 2011, 80 (274) : 847 - 862
  • [6] Finite Difference-Collocation Method for the Generalized Fractional Diffusion Equation
    Kumar, Sandeep
    Pandey, Rajesh K.
    Kumar, Kamlesh
    Kamal, Shyam
    Thach Ngoc Dinh
    [J]. FRACTAL AND FRACTIONAL, 2022, 6 (07)
  • [7] Symplectic finite difference approximations of the nonlinear Klein-Gordon equation
    Duncan, DB
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (05) : 1742 - 1760
  • [8] Regularised Finite Difference Methods for the Logarithmic Klein-Gordon Equation
    Yan, Jingye
    Zhang, Hong
    Qian, Xu
    Song, Songhe
    [J]. EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (01) : 119 - 142
  • [9] Numerical solution of time fractional nonlinear Klein-Gordon equation using Sinc-Chebyshev collocation method
    Nagy, A. M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 310 : 139 - 148
  • [10] Space-time spectral collocation method for Klein-Gordon equation
    Zhang, Ping
    Li, Te
    Zhang, Yuan-Hao
    [J]. JOURNAL OF ALGORITHMS & COMPUTATIONAL TECHNOLOGY, 2021, 15