COMPARISON OF L-BAND AND X-BAND POLARIMETRIC SAR DATA CLASSIFICATION FOR SCREENING EARTHEN LEVEES

被引:3
|
作者
Dabbiru, Lalitha [1 ]
Aanstoos, James V. [1 ]
Younan, Nicolas H.
机构
[1] Mississippi State Univ, Geosyst Res Inst, Mississippi State, MS 39762 USA
关键词
Levee classification; remote sensing; synthetic aperture radar; support vector machine;
D O I
10.1109/IGARSS.2014.6947038
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The main focus of this research is to detect vulnerabilities on the Mississippi river levees using remotely sensed Synthetic Aperture Radar (SAR) imagery. Unstable slope conditions can lead to small landslides which weaken the levees and increase the likelihood of failure during floods. This paper analyzes the ability of detecting the landslides on the levee with different frequency bands of synthetic aperture radar data using supervised machine learning algorithms. The two SAR datasets used in this study are: (1) the X-band satellite-based radar data from DLR's TerraSAR-X (TSX), and (2) the L-band airborne radar data from NASA JPL's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). The Support Vector Machine (SVM) classification algorithm was implemented to detect the landslides on the levee. The results showed that higher accuracies have been attained using L-band radar data compared to the X-band data, likely due to the longer wavelength and deeper penetration capability of L-band data.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Landslide Detection on Earthen Levees with X-band and L-band Radar Data
    Dabbiru, Lalitha
    Aanstoos, James V.
    Hasan, Khaled
    Younan, Nicolas H.
    Li, Wei
    [J]. 2013 IEEE (AIPR) APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP: SENSING FOR CONTROL AND AUGMENTATION, 2013,
  • [2] COMPARISON OF URBAN AREAS EXTRACTED BY USING L-BAND AND X-BAND FULLY POLARIMETRIC SAR IMAGES
    Susaki, Junichi
    Kishimoto, Masaaki
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1171 - 1174
  • [3] COMPARISON OF C-BAND AND X-BAND POLARIMETRIC SAR DATA FOR RIVER ICE CLASSIFICATION ON THE PEACE RIVER
    Los, H.
    Osinska-Skotak, K.
    Pluto-Kossakowska, J.
    Bernier, M.
    Gauthier, Y.
    Jasek, M.
    Roth, A.
    [J]. XXIII ISPRS CONGRESS, COMMISSION VII, 2016, 41 (B7): : 543 - 548
  • [4] Unsupervised classification of a central Italy landscape by polarimetric L-band SAR data
    Putignano, C
    Schiavon, G
    Solimini, D
    Trisasongko, B
    [J]. IGARSS 2005: IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings, 2005, : 1291 - 1294
  • [5] Discrimination potential of X-band polarimetric SAR data
    Baghdadi, N
    Holah, N
    Dubois-Fernandez, P
    Prévot, L
    Hosford, S
    Chanzy, A
    Dupuis, X
    Zribi, M
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2004, 25 (22) : 4933 - 4943
  • [6] An L-band fully polarimetric SAR system for vegetation classification
    Corucci, Linda
    Meta, Adriano
    Coccia, Alex
    [J]. 2015 IEEE 5TH ASIA-PACIFIC CONFERENCE ON SYNTHETIC APERTURE RADAR (APSAR), 2015, : 558 - 560
  • [7] Comparison of X-Band and L-Band Soil Moisture Retrievals for Land Data Assimilation
    Xu, Xiaoyong
    Tolson, Bryan A.
    Li, Jonathan
    Davison, Bruce
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (09) : 3850 - 3860
  • [8] THE EFFECT OF FOREST FOLIAGE ON L-BAND POLARIMETRIC SAR DATA
    Kimura, Hiroshi
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 5875 - 5878
  • [9] Estimation of snow density with L-band polarimetric SAR data
    Li, Z
    Guo, HD
    Shi, JC
    [J]. IGARSS 2000: IEEE 2000 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOL I - VI, PROCEEDINGS, 2000, : 1757 - 1759
  • [10] Towards a damage assessment in a tsunami affected area using L-band and X-band SAR data
    Gokon, Hideomi
    Koshimura, Shunichi
    Meguro, Kimiro
    [J]. 2017 JOINT URBAN REMOTE SENSING EVENT (JURSE), 2017,