Graphene Nanoribbon Devices and Quantum Heterojunction Devices

被引:0
|
作者
Kim, Philip [1 ,2 ]
Han, Melinda Y. [2 ]
Young, Andrea F. [1 ]
Meric, Inane [3 ]
Shepard, Kenneth L. [3 ]
机构
[1] Columbia Univ, Dept Phys, 538 W 120th St, New York, NY 10027 USA
[2] Columbia Univ, Dept Appl Phys, New York, NY 10027 USA
[3] Columbia Univ, Dept Elect Engn, New York, NY 10027 USA
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We fabricate lithographically patterned graphene nanoribbon structures. The sizes of these energy gaps estimated from the conductance in the nonlinear response regime indicate that the gap is scaling inversely proportional to the width of the ribbons. The temperature dependent conductance measurements suggest the substantial amount of edge disorders in the graphene nanoribbons. We also fabricate the lateral graphene heterojunction devices employing the local top gate structures. Quantum conductance oscillations are observed in these devices.
引用
收藏
页码:220 / +
页数:2
相关论文
共 50 条
  • [1] Strain effects on the quantum capacitance of graphene nanoribbon devices
    Kliros, George S.
    [J]. APPLIED SURFACE SCIENCE, 2020, 502 (502)
  • [2] Modeling of graphene nanoribbon devices
    Guo, Jing
    [J]. NANOSCALE, 2012, 4 (18) : 5538 - 5548
  • [3] Graphene nanoribbon devices at high bias
    Han M.Y.
    Kim P.
    [J]. Nano Convergence, 1 (1)
  • [4] Contact engineering for graphene nanoribbon devices
    Mutlu, Zafer
    Dinh, Christina
    Barin, Gabriela Borin
    Jacobse, Peter H.
    Kumar, Aravindh
    Polley, Debanjan
    Singh, Hanuman
    Wang, Ziyi
    Lin, Yuxuan Cosmi
    Schwartzberg, Adam
    Crommie, Michael F.
    Mullen, Klaus
    Ruffieux, Pascal
    Fasel, Roman
    Bokor, Jeffrey
    [J]. APPLIED PHYSICS REVIEWS, 2023, 10 (04)
  • [5] Spin waves in graphene nanoribbon devices
    Culchac, F. J.
    Latge, A.
    Costa, A. T.
    [J]. PHYSICAL REVIEW B, 2012, 86 (11):
  • [6] Spatially resolved photocurrents in graphene nanoribbon devices
    Stuetzel, Eberhard Ulrich
    Dufaux, Thomas
    Sagar, Adarsh
    Rauschenbach, Stephan
    Balasubramanian, Kannan
    Burghard, Marko
    Kern, Klaus
    [J]. APPLIED PHYSICS LETTERS, 2013, 102 (04)
  • [7] Review on graphene nanoribbon devices for logic applications
    Marmolejo-Tejada, Juan M.
    Velasco-Medina, Jaime
    [J]. MICROELECTRONICS JOURNAL, 2016, 48 : 18 - 38
  • [8] Design evaluation of graphene nanoribbon nanoelectromechanical devices
    Lam, Kai-Tak
    Leo, Marie Stephen
    Lee, Chengkuo
    Liang, Gengchiau
    [J]. JOURNAL OF APPLIED PHYSICS, 2011, 110 (02)
  • [9] Hysteresis in graphene nanoribbon field-effect devices
    Tries, Alexander
    Richter, Nils
    Chen, Zongping
    Narita, Akimitsu
    Muellen, Klaus
    Wang, Hai, I
    Bonn, Mischa
    Klaeui, Mathias
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (10) : 5667 - 5672
  • [10] Modelling very large magnetoresistance of graphene nanoribbon devices
    Kumar, S. Bala
    Guo, Jing
    [J]. NANOSCALE, 2012, 4 (03) : 982 - 985