A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil-water separation through a chemical fabrication

被引:343
|
作者
Wang, Huaiyuan [1 ]
Wang, Enqun [1 ]
Liu, Zhanjian [1 ]
Gao, Dong [1 ]
Yuan, Ruixia [1 ]
Sun, Liyuan [1 ]
Zhu, Yanji [1 ]
机构
[1] Northeast Petr Univ, Coll Chem & Chem Engn, Daqing 163318, Peoples R China
基金
美国国家科学基金会;
关键词
HIGHLY EFFICIENT; SPILL; ABSORPTION; SURFACES; SORBENT; REMOVAL; PARTICLES; DOPAMINE; GRAPHENE; SOLVENTS;
D O I
10.1039/c4ta03945a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Oil spillage and industrial oily wastewater have caused severe environmental concerns. A super absorbent material capable of separating oil-water mixtures, especially with a high absorption capacity and mechanical strength, is urgently desired. Here, a common and feasible approach to fabricate carbon nanotubes (CNTs) reinforced polyurethane (PU) sponge is presented that shows superhydrophobic and superoleophilic properties. The method involves the oxidative self-polymerization of dopamine and the reaction of hydrophilic polydopamine (PDA) with hydrophobic octadecylamine (ODA). The superhydrophobic stability of the as-prepared sponge with temperatures and in corrosive solutions of different pH is investigated. The as-prepared sponge could quickly and selectively absorb various kinds of oils up to 34.9 times of its own weight, and the absorbed oils can be collected by a simple squeezing process. More interestingly, the mechanical strength of the as-prepared sponge is improved due to the structural reinforcement of CNTs anchored on the sponge skeleton. Furthermore, the recovered sponge could be reused to separate oil-water mixture 150 times while maintaining its high absorption capacity. This promising multifunctional sponge exhibits significant potential as an efficient absorbent in large-scale oil-water separation applications.
引用
收藏
页码:266 / 273
页数:8
相关论文
共 50 条
  • [1] Fabrication of a robust superhydrophobic polyurethane sponge for oil-water separation
    Cheng, Qianhui
    Liu, Changsong
    Liu, Shengyou
    SURFACE ENGINEERING, 2019, 35 (05) : 403 - 410
  • [2] Superhydrophobic and superoleophilic carbon nanofiber grafted polyurethane for oil-water separation
    Baig, Nadeem
    Alghunaimi, Fand I.
    Dossary, Hind S.
    Saleh, Tawfik A.
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2019, 123 : 327 - 334
  • [3] Superhydrophobic/superoleophilic magnetic polyurethane sponge for oil/water separation
    Liu, Shanhu
    Xu, Qingfeng
    Latthe, Sanjay S.
    Gurav, Annaso B.
    Xing, Ruimin
    RSC ADVANCES, 2015, 5 (84): : 68293 - 68298
  • [4] Fabrication of superhydrophobic and superoleophilic textiles for oil-water separation
    Xue, Chao-Hua
    Ji, Peng-Ting
    Zhang, Ping
    Li, Ya-Ru
    Jia, Shun-Tian
    APPLIED SURFACE SCIENCE, 2013, 284 : 464 - 471
  • [5] A Robust Superhydrophobic Polyurethane Sponge Loaded with Multi-Walled Carbon Nanotubes for Efficient and Selective Oil-Water Separation
    Liu, De
    Wang, Shiying
    Wu, Tao
    Li, Yujiang
    NANOMATERIALS, 2021, 11 (12)
  • [6] Superhydrophobic modification of polyurethane sponge for the oil-water separation
    Lin, Bo
    Chen, Jian
    Li, Zeng-Tian
    He, Fu-An
    Li, De-Hao
    SURFACE & COATINGS TECHNOLOGY, 2019, 359 : 216 - 226
  • [7] Superhydrophobic/superoleophilic polyurethane /reduced graphene oxide/ sponge for efficient oil-water separation and photothermal remediation
    Ji, Hong
    Guo, Jie
    Yang, Ke
    Jiang, Juncheng
    Xing, Zhixiang
    Process Safety and Environmental Protection, 2024, 191 : 2653 - 2662
  • [8] Fabrication of Superhydrophobic/Superoleophilic Kitchen Sponge for Removal and Separation of Oil from Water
    He, Meiru
    Wang, Huameng
    Cheng, Yuanyuan
    Niu, Qian
    He, Linlin
    Liu, Chunxue
    CHEMISTRYSELECT, 2023, 8 (35):
  • [9] Fabrication of a superhydrophobic-superoleophilic particle material for oil-water separation and oil extraction
    Zhu, Guoxin
    Li, Xiao
    Zhang, Xiong
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2024, 681
  • [10] Fabrication and Properties of Superhydrophobic ZnO Sponge for Oil-Water Separation
    Cheng Qian-hui
    Liu Chang-song
    CHINA SURFACE ENGINEERING, 2018, 31 (01) : 148 - 155