Estimation of the Multivariate Box-Cox Transformation Parameters

被引:0
|
作者
Rahman, Mezbahur [1 ]
Pearson, Larry M. [1 ]
机构
[1] Minnesota State Univ, Mankato, MN 56001 USA
关键词
NORMALITY; TESTS;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The Box-Cox transformation is a well known family of power transformations that brings a set of data closer into agreement with the normality assumption of the residuals and, hence, the response variables of a postulated model in regression analysis. This paper implements the Newton-Raphson method in estimating the multivariate Box-Cox transformation parameters and gives a new method of estimation of the parameters by maximizing the multivariate Shapiro-Wilk statistic. Simulation is performed to compare the two methods for bivariate transformations.
引用
收藏
页码:173 / 183
页数:11
相关论文
共 50 条