Raynaud-Tamagawa theta divisors and new-ordinariness of ramified coverings of curves

被引:1
|
作者
Yang, Yu [1 ]
机构
[1] Kyoto Univ, Res Inst Math Sci, Kyoto 6068502, Japan
关键词
Pointed stable curve; Admissible covering; Generalized Hasse-Witt invariant; New-ordinary; Raynaud-Tamagawa theta divisor; Positive characteristic; ALGEBRAICALLY CLOSED FIELDS; FUNDAMENTAL-GROUPS; P-RANK;
D O I
10.1016/j.jalgebra.2021.07.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, D-X) be a smooth pointed stable curve over an algebraically closed field kof characteristic p > 0. Suppose that (X, D-X) is generic. We give a necessary and sufficient condition for new-ordinariness of prime-to-pcyclic tame coverings of (X, D-X). This result generalizes a result of S. Nakajima concerning the ordinariness of prime-to-p cyclic etale coverings of generic curves to the case of tamely ramified coverings. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:263 / 294
页数:32
相关论文
empty
未找到相关数据