Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition

被引:703
|
作者
Wang, Shanshan [1 ]
Rong, Youmin [1 ]
Fan, Ye [1 ]
Pacios, Merce [1 ]
Bhaskaran, Harish [1 ]
He, Kuang [1 ]
Warner, Jamie H. [1 ]
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
PHASE GROWTH; LARGE-AREA; PHOTOLUMINESCENCE; NANOSHEETS; LAYERS;
D O I
10.1021/cm5025662
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atmospheric-pressure chemical vapor deposition (CVD) is used to grow monolayer MoS2 two-dimensional crystals at elevated temperatures on silicon substrates with a 300 nm oxide layer. Our CVD reaction is hydrogen free, with the sulfur precursor placed in a furnace separate from the MoO3 precursor to individually control their heating profiles and provide greater flexibility in the growth recipe. We intentionally establish a sharp gradient of MoO3 precursor concentration on the growth substrate to explore its sensitivity to the resultant MoS2 domain growth within a relatively uniform temperature range. We find that the shape of MoS2 domains is highly dependent upon the spatial location on the silicon substrate, with variation from triangular to hexagonal geometries. The shape change of domains is attributed to local changes in the Mo:S ratio of precursors (1:>2, 1:2, and 1:<2) and its influence on the kinetic growth dynamics of edges. These results improve our understanding of the factors that influence the growth of MoS2 domains and their shape evolution.
引用
收藏
页码:6371 / 6379
页数:9
相关论文
共 50 条
  • [1] Shape-Dependent Defect Structures of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition
    Zhang, Guozhu
    Wang, Jingwei
    Wu, Zefei
    Shi, Run
    Ouyang, Wenkai
    Amini, Abbas
    Chandrashekar, Bananakere Nanjegowda
    Wang, Ning
    Cheng, Chun
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (01) : 763 - 770
  • [2] Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition
    Schmidt, Hennrik
    Wang, Shunfeng
    Chu, Leiqiang
    Toh, Minglin
    Kumar, Rajeev
    Zhao, Weijie
    Neto, A. H. Castro
    Martin, Jens
    Adam, Shaffique
    Oezyilmaz, Barbaros
    Eda, Goki
    NANO LETTERS, 2014, 14 (04) : 1909 - 1913
  • [3] Annealing Response of Monolayer MoS2 Grown by Chemical Vapor Deposition
    Pitthan, E.
    Gerling, E. R. F.
    Feijo, T. O.
    Radtke, C.
    Soares, G. V.
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2019, 8 (04) : P267 - P270
  • [4] Effect of Mo concentration on shape and size of monolayer MoS2 crystals by chemical vapor deposition
    Wang, Wenzhao
    Zeng, Xiangbin
    Wu, Shaoxiong
    Zeng, Yang
    Hu, Yishuo
    Ding, Jia
    Xu, Sue
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (39)
  • [5] Optoelectronic properties of chemical vapor deposition grown monolayer MoS2 nanowires
    Pan, Cai
    Chen, Fei
    Su, Weitao
    Lu, Hongwei
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [6] High Mobility in Monolayer MoS2 Devices Grown by Chemical Vapor Deposition
    Smithe, Kirby K. H.
    English, Christopher D.
    Suryavanshi, Saurabh V.
    Pop, Eric
    2015 73RD ANNUAL DEVICE RESEARCH CONFERENCE (DRC), 2015, : 239 - 240
  • [7] Morphology evolution of MoS2 nanorods grown by chemical vapor deposition
    Han, Shuming
    Luo, Xingfang
    Cao, Yingjie
    Yuan, Cailei
    Yang, Yong
    Li, Qinliang
    Yu, Ting
    Ye, Shuangli
    JOURNAL OF CRYSTAL GROWTH, 2015, 430 : 1 - 6
  • [8] Shape consistency of MoS2 flakes grown using chemical vapor deposition
    Wang, Lei
    Chen, Fei
    Ji, Xiaohong
    APPLIED PHYSICS EXPRESS, 2017, 10 (06)
  • [9] Origin of electrically induced defects in monolayer MoS2 grown by chemical vapor deposition
    Ansh, Ansh
    Patbhaje, Utpreksh
    Kumar, Jeevesh
    Meersha, Adil
    Shrivastava, Mayank
    COMMUNICATIONS MATERIALS, 2023, 4 (01)
  • [10] Origin of electrically induced defects in monolayer MoS2 grown by chemical vapor deposition
    Ansh Ansh
    Utpreksh Patbhaje
    Jeevesh Kumar
    Adil Meersha
    Mayank Shrivastava
    Communications Materials, 4