Effect of Small Reaction Locus in Free-Radical Polymerization: Conventional and Reversible-Deactivation Radical Polymerization

被引:8
|
作者
Tobita, Hidetaka [1 ]
机构
[1] Univ Fukui, Dept Mat Sci & Engn, 3-9-1 Bunkyo, Fukui 9108507, Japan
来源
POLYMERS | 2016年 / 8卷 / 04期
关键词
emulsion polymerization; radical polymerization; polymerization rate; theory; reversible-addition-fragmentation chain-transfer (RAFT); stable-radical-mediated polymerization (SRMP); atom-transfer radical polymerization (ATRP); MOLECULAR-WEIGHT DISTRIBUTION; MINIEMULSION POLYMERIZATION; DISPERSED SYSTEMS; INTERMEDIATE TERMINATION; EMULSION POLYMERIZATION; BULK-POLYMERIZATION; RAFT MODELS; FRAGMENTATION; KINETICS; COMPARTMENTALIZATION;
D O I
10.3390/polym8040155
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
When the size of a polymerization locus is smaller than a few hundred nanometers, such as in miniemulsion polymerization, each locus may contain no more than one key-component molecule, and the concentration may become much larger than the corresponding bulk polymerization, leading to a significantly different rate of polymerization. By focusing attention on the component having the lowest concentration within the species involved in the polymerization rate expression, a simple formula can predict the particle diameter below which the polymerization rate changes significantly from the bulk polymerization. The key component in the conventional free-radical polymerization is the active radical and the polymerization rate becomes larger than the corresponding bulk polymerization when the particle size is smaller than the predicted diameter. The key component in reversible-addition-fragmentation chain-transfer (RAFT) polymerization is the intermediate species, and it can be used to predict the particle diameter below which the polymerization rate starts to increase. On the other hand, the key component is the trapping agent in stable-radical-mediated polymerization (SRMP) and atom-transfer radical polymerization (ATRP), and the polymerization rate decreases as the particle size becomes smaller than the predicted diameter.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Aerobic mechanochemical reversible-deactivation radical polymerization
    Feng, Haoyang
    Chen, Zhe
    Li, Lei
    Shao, Xiaoyang
    Fan, Wenru
    Wang, Chen
    Song, Lin
    Matyjaszewski, Krzysztof
    Pan, Xiangcheng
    Wang, Zhenhua
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [2] Terminology for Reversible-Deactivation Radical Polymerization Previously Called "Controlled" Radical or "Living" Radical Polymerization
    Jenkins, A. D.
    Jones, R. G.
    Moad, G.
    KEMIJA U INDUSTRIJI-JOURNAL OF CHEMISTS AND CHEMICAL ENGINEERS, 2012, 61 (5-6): : 297 - 303
  • [3] Reversible-deactivation radical polymerization of cyclic ketene acetals
    Jackson, Alexander W.
    POLYMER CHEMISTRY, 2020, 11 (21) : 3525 - 3545
  • [4] Synthesis of Glycopolymer Architectures by Reversible-Deactivation Radical Polymerization
    Ghadban, Ali
    Albertin, Luca
    POLYMERS, 2013, 5 (02) : 431 - 526
  • [5] Threshold Particle Diameters in Miniemulsion Reversible-Deactivation Radical Polymerization
    Tobita, Hidetaka
    POLYMERS, 2011, 3 (04): : 1944 - 1971
  • [6] Organo-Cobalt Complexes in Reversible-Deactivation Radical Polymerization
    Benchaphanthawee, Wachara
    Peng, Chi-How
    CHEMICAL RECORD, 2021, 21 (12): : 3628 - 3647
  • [7] Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications
    Corrigan, Nathaniel
    Jung, Kenward
    Moad, Graeme
    Hawker, Craig J.
    Matyjaszewski, Krzysztof
    Boyer, Cyrille
    PROGRESS IN POLYMER SCIENCE, 2020, 111
  • [8] Terminology for reversible-deactivation radical polymerization previously called "controlled" radical or "living" radical polymerization (IUPAC Recommendations 2010)
    Jenkins, Aubrey D.
    Jones, Richard G.
    Moad, Graeme
    PURE AND APPLIED CHEMISTRY, 2010, 82 (02) : 483 - 491
  • [9] Terminology for reversible-deactivation radical polymerization previously called controlled radical or living radical polymerization (IUPAC terminology 2010)
    Vidović, Elvira
    Kemija u industriji/Journal of Chemists and Chemical Engineers, 2012, 61 (5-6): : 295 - 303
  • [10] Reversible-Deactivation Free-Radical Polymerization of Methyl Methacrylate in the Presence of N, N-Bis-Salicylaldehyde-Ethylenediamine
    Li B.
    Shi Y.
    Gaofenzi Cailiao Kexue Yu Gongcheng/Polymeric Materials Science and Engineering, 2019, 35 (02): : 36 - 40