SrCo0.8Ti0.1Ta0.1O3-δ perovskite: A new highly active and durable cathode material for intermediate-temperature solid oxide fuel cells

被引:56
|
作者
Gu, Hongxia [1 ]
Xu, Meigui [1 ]
Song, Yufei [1 ]
Zhou, Chuan [1 ]
Su, Chao [2 ]
Wang, Wei [1 ]
Ran, Ran [1 ]
Zhou, Wei [1 ]
Shao, Zongping [1 ,2 ]
机构
[1] Nanjing Tech Univ, State Key Lab Mat Oriented Chem Engn, Coll Chem Engn, Nanjing 210009, Peoples R China
[2] Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn WASM MEC, Perth, WA 6845, Australia
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Solid oxide fuel cell; Perovskite oxide; Co-doping; Cathode; Oxygen reduction; CO-DOPED PEROVSKITE; OXYGEN REDUCTION REACTION; HIGH-PERFORMANCE CATHODE; CRYSTAL-STRUCTURE; SURFACE EXCHANGE; ELECTRONEGATIVITY; DIFFUSION; EFFICIENT; ELECTROCATALYSTS; SRCOO3-DELTA;
D O I
10.1016/j.compositesb.2021.108726
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Reducing the operating temperatures of solid oxide fuel cells (SOFCs) to the intermediate-temperature range (IT, 400-650 degrees C) can bring about several benefits including cost effectiveness, prolonged lifetime and flexible sealing. Nevertheless, the accompanying deterioration of cathodic activity for oxygen reduction reaction (ORR) introduces a large obstacle for commercial applications of IT-SOFCs. Herein, a new perovskite SrCo0.8Ti0.1Ta0.1O3-delta (SCTT) is developed by co-doping titanium and tantalum into the B-site of parent SrCoO3 oxide, which may tackle this problem. At 400-650 degrees C, SCTT shows high electrical conductivities (65-142 S cm(-1)), appropriate oxygen vacancy concentrations (0.23-0.27) and high bulk diffusion capability due to a synergy between the two dopants in SCTT. Consequently, SCTT exhibits a favorable ORR activity with an area-specific resistance of only 0.17 Omega cm(2) at 500 degrees C on samaria-doped ceria electrolyte, and the corresponding cell generates a high peak power density (PPD) of 0.90 W cm(-2) at 500 degrees C with negligible performance decay for 180 h. Additionally, SCTT performs well in protonic ceramic fuel cells, achieving a PPD of 0.78 W cm(-2) at 650 degrees C and a high durability for similar to 176 h at 550 degrees C. This work provides a new promising cathode material that may accelerate the commercialization of IT-SOFC technology.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] SrCo0.7Fe0.2Ta0.1O3-δ perovskite as a cathode material for intermediate-temperature solid oxide fuel cells
    Qu, Baoping
    Long, Wen
    Jin, Fangjun
    Wang, Shizhuo
    He, Tianmin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (23) : 12074 - 12082
  • [2] Structural, thermal and electrochemical properties of SrCo0.8Fe0.1Ga0.1O3-δ cathode material for intermediate-temperature solid oxide fuel cells
    Meng, Xiangwei
    Wang, Sanlong
    Lu, Shiquan
    Yu, William W.
    Sui, Yingrui
    Yang, Lili
    Wei, Maobin
    Cao, Jian
    Yang, Jinghai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 727 : 27 - 33
  • [3] SrCo0.85Fe0.1P0.05O3-δ perovskite as a cathode for intermediate-temperature solid oxide fuel cells
    Li, Mengran
    Zhou, Wei
    Xu, Xiaoyong
    Zhu, Zhonghua
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (43) : 13632 - 13639
  • [4] Stability, compatibility and performance improvement of SrCo0.9Fe0.1Nb0.1O3-δ perovskite as a cathode for intermediate-temperature solid oxide fuel cells
    Wang, Shizhuo
    Fin, Fangjun
    Li, Lei
    Li, Rongrong
    Qu, Baoping
    He, Tianmin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (07) : 4465 - 4477
  • [5] Cobalt-free perovskite SrTa0.1Mo0.1Fe0.8O3-δ as cathode for intermediate-temperature solid oxide fuel cells
    Yao, Chuangang
    Yang, Jixing
    Zhang, Haixia
    Meng, Jian
    Meng, Fanzhi
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (02) : 925 - 933
  • [6] Highly active and stable BaCo0.8Zr0.1Y0.1O3-δ cathode for intermediate temperature solid oxide fuel cells
    Yi, Wendi
    Tian, Yaopeng
    Lu, Chunling
    Wang, Biao
    Liu, Yaowei
    Gao, Shoushan
    Niu, Bingbing
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (06) : 2860 - 2869
  • [7] Nanostructured thin film SrCo0.8Nb0.1Ta0.1O3-δ cathode for low-temperature solid oxide fuel cells
    Ryu, Sangbong
    Hwang, Jaewon
    Lee, Sanghoon
    Jeong, Wonyeop
    Lee, Myung Seok
    Yu, Wonjong
    Cha, Suk Won
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 104 : 558 - 565
  • [8] Investigation of Perovskite Oxide SrCo0.8Cu0.1Nb0.1O3-δ as a Cathode Material for Room Temperature Direct Ammonia Fuel Cells
    Zou, Peimiao
    Chen, Shigang
    Lan, Rong
    Tao, Shanwen
    CHEMSUSCHEM, 2019, 12 (12) : 2788 - 2794
  • [9] Evaluation and optimization of SrCo0.9Ta0.1O3-δ perovskite as cathode for solid oxide fuel cells
    Zhou, Qingjun
    Wei, Tong
    Shi, Yihua
    Guo, Songqing
    Li, Yan
    Su, Jingxin
    Ren, Huan
    Zhu, Yin
    CURRENT APPLIED PHYSICS, 2012, 12 (04) : 1092 - 1095
  • [10] BaCo0.7Fe0.2Nb0.1O3-δ Perovskite Oxide as Cathode Material for Intermediate-Temperature Solid Oxide Fuel Cells
    Lue, Shiquan
    Ji, Yuan
    Meng, Xiangwei
    Long, Guohui
    Wei, Tao
    Zhang, Yanlei
    Lue, Tianquan
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (06) : B103 - B105