On Nonlinear Model Predictive Control for Energy-Efficient Torque-Vectoring

被引:45
|
作者
Parra, Alberto [1 ,2 ]
Tavernini, Davide [2 ]
Gruber, Patrick [2 ]
Sorniotti, Aldo [2 ]
Zubizarreta, Asier [3 ]
Perez, Joshue [1 ]
机构
[1] Basque Res & Technol Alliance, Tecnalia Res & Innovat, San Sebastian 20009, Spain
[2] Univ Surrey, Guildford GU2 7XH, Surrey, England
[3] Univ Basque Country, Bilbao 48013, Spain
基金
欧盟地平线“2020”;
关键词
TV; Mechanical power transmission; Energy efficiency; Tires; Torque; Resource management; Wheels; Torque-vectoring; nonlinear model predictive control; powertrain power loss; tire slip power loss; reference yaw rate; control allocation; weight adaptation;
D O I
10.1109/TVT.2020.3022022
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A recently growing literature discusses the topics of direct yaw moment control based on model predictive control (MPC), and energy-efficient torque-vectoring (TV) for electric vehicles with multiple powertrains. To reduce energy consumption, the available TV studies focus on the control allocation layer, which calculates the individual wheel torque levels to generate the total reference longitudinal force and direct yaw moment, specified by higher level algorithms to provide the desired longitudinal and lateral vehicle dynamics. In fact, with a system of redundant actuators, the vehicle-level objectives can be achieved by distributing the individual control actions to minimize an optimality criterion, e.g., based on the reduction of different power loss contributions. However, preliminary simulation and experimental studies - not using MPC - show that further important energy savings are possible through the appropriate design of the reference yaw rate. This paper presents a nonlinear model predictive control (NMPC) implementation for energy-efficient TV, which is based on the concurrent optimization of the reference yaw rate and wheel torque allocation. The NMPC cost function weights are varied through a fuzzy logic algorithm to adaptively prioritize vehicle dynamics or energy efficiency, depending on the driving conditions. The results show that the adaptive NMPC configuration allows stable cornering performance with lower energy consumption than a benchmarking fuzzy logic TV controller using an energy-efficient control allocation layer.
引用
收藏
页码:173 / 188
页数:16
相关论文
共 50 条
  • [1] Nonlinear Model Predictive Control for Integrated Energy-Efficient Torque-Vectoring and Anti-Roll Moment Distribution
    Dalboni, Matteo
    Tavernini, Davide
    Montanaro, Umberto
    Soldati, Alessandro
    Concari, Carlo
    Dhaens, Miguel
    Sorniotti, Aldo
    [J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2021, 26 (03) : 1212 - 1224
  • [2] Energy-Efficient Torque-Vectoring Control of Electric Vehicles With Multiple Drivetrains
    De Filippis, Giovanni
    Lenzo, Basilio
    Sorniotti, Aldo
    Gruber, Patrick
    De Nijs, Wouter
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (06) : 4702 - 4715
  • [3] An energy-efficient torque-vectoring algorithm for electric vehicles with multiple motors
    Chatzikomis, C.
    Zanchetta, M.
    Gruber, P.
    Sorniotti, A.
    Modic, B.
    Motaln, T.
    Blagotinsek, L.
    Gotovac, G.
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 128 : 655 - 673
  • [4] Comparison of Centralized and Multi-Layer Architectures for Nonlinear Model Predictive Torque-Vectoring and Traction Control
    Rini, Gabriele
    De Bernardis, Martino
    Bottiglione, Francesco
    Hartavi, Ahu Ece
    Sorniotti, Aldo
    [J]. INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2023, 24 (04) : 1101 - 1116
  • [5] Comparison of Centralized and Multi-Layer Architectures for Nonlinear Model Predictive Torque-Vectoring and Traction Control
    Gabriele Rini
    Martino De Bernardis
    Francesco Bottiglione
    Ahu Ece Hartavi
    Aldo Sorniotti
    [J]. International Journal of Automotive Technology, 2023, 24 : 1101 - 1116
  • [6] Torque Vectoring Control as an Energy-Efficient Alternative to Vehicle Suspensions Tuning
    Asperti, Michele
    Vignati, Michele
    Sabbioni, Edoardo
    [J]. ENERGIES, 2024, 17 (12)
  • [7] Model Predictive Control for Energy-Efficient Yaw-Stabilizing Torque Vectoring in Electric Vehicles With Four In-Wheel Motors
    Kim, Sang Hyuk
    Kim, Kwang-Ki K.
    [J]. IEEE ACCESS, 2023, 11 : 37665 - 37680
  • [8] A FEEDBACK CONTROL STRATEGY FOR TORQUE-VECTORING OF IWM VEHICLES
    Braghin, Francesco
    Sabbioni, Edoardo
    Sironi, Gabriele
    Vignati, Michele
    [J]. PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2014, VOL 3, 2014,
  • [9] On the Feedback Control of Hitch Angle through Torque-Vectoring
    Zanchetta, M.
    Tavernini, D.
    Sorniotti, A.
    Gruber, P.
    Lenzo, B.
    Ferrara, A.
    De Nijs, W.
    Sannen, K.
    De Smet, J.
    [J]. 2018 IEEE 15TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL (AMC), 2018, : 535 - 540
  • [10] Coordinated control design for steering and torque-vectoring in Model-Free Control structure
    Hegedus, Tamas
    Fenyes, Daniel
    Nemeth, Balazs
    Szabo, Zoltan
    Gaspar, Peter
    [J]. IFAC PAPERSONLINE, 2022, 55 (06): : 496 - 501