Exact densities of states of fixed trace ensembles of random matrices

被引:13
|
作者
Delannay, R
Le Caër, G
机构
[1] Univ Rennes 1, CNRS, UMR C6626, Grp Mat Condensee & Mat, F-35042 Rennes, France
[2] Ecole Mines, CNRS, UMR 7584, Sci & Genie Mat Met Lab, F-54042 Nancy, France
来源
关键词
D O I
10.1088/0305-4470/33/14/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The densities of states and the associated characteristic functions of fixed-trace ensembles (FTEs) of N x N random matrices M-N, (tr(M-N(+) M-N) = constant), are calculated exactly at finite N in the case of real-symmetric matrices and of Hermitian matrices. The exact radial density is calculated at finite N for fixed-trace ensembles of complex matrices with no further restrictions on the entries. The density calculated in the Hermitian case coincides with very recent literature results. The exact finite-N density of states of any ensemble of N x N random matrices of a given symmetry, whose probability density depends only on tr(SN+SN), is simply obtained from the density of the FTE of the same symmetry by a one-dimensional integral.
引用
收藏
页码:2611 / 2630
页数:20
相关论文
共 50 条
  • [1] Products of random matrices from fixed trace and induced Ginibre ensembles
    Akemann, Gernot
    Cikovic, Milan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (18)
  • [2] The distributions of the determinant of fixed-trace ensembles of real-symmetric and of Hermitian random matrices
    Le Caer, G
    Delannay, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (38): : 9885 - 9898
  • [3] Limit correlation functions for fixed trace random matrix ensembles
    Goetze, Friedrich
    Gordin, Mikhail
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (01) : 203 - 229
  • [4] Limit Correlation Functions for Fixed Trace Random Matrix Ensembles
    Friedrich Götze
    Mikhail Gordin
    Communications in Mathematical Physics, 2008, 281
  • [5] Limit correlation functions at zero for fixed trace random matrix ensembles
    Götze F.
    Gordin M.
    Levina A.
    Journal of Mathematical Sciences, 2007, 147 (4) : 6884 - 6890
  • [6] Deformed ensembles of random matrices
    Peche, Sandrine
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL III, 2014, : 1159 - 1174
  • [7] Disordered ensembles of random matrices
    Bohigas, O.
    de Carvalho, J. X.
    Pato, M. P.
    PHYSICAL REVIEW E, 2008, 77 (01)
  • [8] Phase-random states: Ensembles of states with fixed amplitudes and uniformly distributed phases in a fixed basis
    Nakata, Yoshifumi
    Turner, Peter S.
    Murao, Mio
    PHYSICAL REVIEW A, 2012, 86 (01):
  • [9] Exact spectral densities of complex noise-plus-structure random matrices
    Grela, Jacek
    Guhr, Thomas
    PHYSICAL REVIEW E, 2016, 94 (04)
  • [10] Exact density of states for finite Gaussian random matrix ensembles via supersymmetry
    Kalisch, F
    Braak, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (47): : 9957 - 9969