Equipartition of entanglement in quantum Hall states

被引:20
|
作者
Oblak, Blagoje [1 ,2 ]
Regnault, Nicolas [3 ]
Estienne, Benoit [1 ]
机构
[1] Sorbonne Univ, CNRS, LPTHE, F-75005 Paris, France
[2] Ecole Polytech, CNRS, CPHT, IP Paris, F-91128 Palaiseau, France
[3] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
基金
欧盟地平线“2020”;
关键词
MATRIX PRODUCT STATES; COUNTING STATISTICS; ENTROPY; BOUNDS;
D O I
10.1103/PhysRevB.105.115131
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the full counting statistics (FCS) and symmetry-resolved entanglement entropies of integer and fractional quantum Hall states. For the filled lowest Landau level of spin-polarized electrons on an infinite cylinder, we compute exactly the charged moments associated with a cut orthogonal to the cylinder???s axis. This yields the behavior of FCS and entropies in the limit of large perimeters: in a suitable range of fluctuations, FCS is Gaussian and entanglement spreads evenly among different charge sectors. Subleading charge-dependent corrections to equipartition are also derived. We then extend the analysis to Laughlin wave functions, where entanglement spectroscopy is carried out assuming the Li-Haldane conjecture. The results confirm equipartition up to small charge-dependent terms, and are then matched with numerical computations based on exact matrix product states.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Fluctuations and entanglement spectrum in quantum Hall states
    Petrescu, Alexandru
    Song, H. Francis
    Rachel, Stephan
    Ristivojevic, Zoran
    Flindt, Christian
    Laflorencie, Nicolas
    Klich, Israel
    Regnault, Nicolas
    Le Hur, Karyn
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [2] Geometric entanglement in integer quantum Hall states
    Sirois, Benoit
    Fournier, Lucie Maude
    Leduc, Julien
    Witczak-Krempa, William
    [J]. PHYSICAL REVIEW B, 2021, 103 (11)
  • [3] Entanglement entropy of integer quantum Hall states
    Rodriguez, Ivan D.
    Sierra, German
    [J]. PHYSICAL REVIEW B, 2009, 80 (15)
  • [4] BRAIDING AND ENTANGLEMENT IN NONABELIAN QUANTUM HALL STATES
    Zikos, G.
    Yang, K.
    Bonesteel, N. E.
    Hormozi, L.
    Simon, S. H.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (12-13): : 2727 - 2736
  • [5] Bipartite entanglement entropy in fractional quantum Hall states
    Zozulya, O. S.
    Haque, M.
    Schoutens, K.
    Rezayi, E. H.
    [J]. PHYSICAL REVIEW B, 2007, 76 (12):
  • [6] Particle entanglement spectra for quantum Hall states on lattices
    Sterdyniak, Antoine
    Regnault, Nicolas
    Moeller, Gunnar
    [J]. PHYSICAL REVIEW B, 2012, 86 (16):
  • [7] Real-space entanglement spectrum of quantum Hall states
    Sterdyniak, A.
    Chandran, A.
    Regnault, N.
    Bernevig, B. A.
    Bonderson, Parsa
    [J]. PHYSICAL REVIEW B, 2012, 85 (12)
  • [8] Entanglement entropy of integer quantum Hall states in polygonal domains
    Rodriguez, Ivan D.
    Sierra, German
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,
  • [9] Entanglement for quantum Hall states and a generalized Chern-Simons form
    Nair, V. P.
    [J]. PHYSICAL REVIEW D, 2020, 101 (12):
  • [10] Probing topological order in quantum Hall states using entanglement calculations
    Haque, Masudul
    [J]. ADVANCES IN QUANTUM COMPUTATION, 2009, 482 : 213 - 218