Stationary sets and infinitary logic

被引:5
|
作者
Shelah, S [1 ]
Väänänen, J
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
[2] Univ Helsinki, Dept Math, SF-00100 Helsinki, Finland
关键词
D O I
10.2307/2586701
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K-lambda(0) be the class of structures [lambda, < A], where A subset of or equal to lambda is disjoint from a club, and let K-lambda(1) be the class of structures [lambda, <, A],where A subset of or equal to lambda contains a club. We prove that if lambda = lambda(<k) is regular, then no sentance of Llambda+kappa separates K-lambda(0) and K-lambda(1). On the other hand, we prove that if lambda = mu(+), mu = mu(<mu), and a I forcing axiom holds (and N-1(L) = N-1 if mu = N-0), then there is a sentance of L-lambda lambda which separates K-lambda(0) and K-lambda(1).
引用
收藏
页码:1311 / 1320
页数:10
相关论文
共 50 条