Harmonic and minimal vector fields on tangent and unit tangent bundles

被引:56
|
作者
Boeckx, E [1 ]
Vanhecke, L [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math, B-3001 Louvain, Belgium
关键词
harmonic and minimal vector fields; tangent bundles; unit tangent sphere bundles; geodesic flow; two-point homogeneous spaces;
D O I
10.1016/S0926-2245(00)00021-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the geodesic flow vector field on the unit tangent sphere bundle of a two-point homogeneous space is both minimal and harmonic and determines a harmonic map. For a complex space form, we exhibit additional unit vector fields on the unit tangent sphere bundle with those properties. We find the same results for the corresponding unit vector fields on the pointed tangent bundle. Moreover, the unit normal to the sphere bundles in the pointed tangent bundle of any Riemannian manifold always enjoys those properties.
引用
收藏
页码:77 / 93
页数:17
相关论文
共 50 条
  • [1] Ong-Natural Conformal Vector Fields on Unit Tangent Bundles
    Kadaoui Abbassi, Mohamed Tahar
    Amri, Noura
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2021, 71 (01) : 75 - 109
  • [2] On g-Natural Conformal Vector Fields on Unit Tangent Bundles
    Mohamed Tahar Kadaoui Abbassi
    Noura Amri
    [J]. Czechoslovak Mathematical Journal, 2021, 71 : 75 - 109
  • [3] Decomposition of Killing vector fields on tangent sphere bundles
    Konno, T
    [J]. TOHOKU MATHEMATICAL JOURNAL, 2000, 52 (03) : 349 - 366
  • [4] Induced vector fields in a hypersurface of Riemannian tangent bundles
    Kitayama, M
    [J]. FINSLER AND LAGRANGE GEOMETRIES, PROCEEDINGS, 2003, : 109 - 111
  • [5] Natural Ricci Solitons on Tangent and Unit Tangent Bundles
    Abbassi, Mohamed Tahar Kadaoui
    Amri, Noura
    [J]. JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2021, 17 (01) : 3 - 29
  • [6] On the geometry of tangent hyperquadric bundles: CR and pseudoharmonic vector fields
    Sorin Dragomir
    Domenico Perrone
    [J]. Annals of Global Analysis and Geometry, 2006, 30 : 211 - 238
  • [7] On the geometry of tangent hyperquadric bundles: CR and pseudoharmonic vector fields
    Dragomir, Sorin
    Perrone, Domenico
    [J]. ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2006, 30 (03) : 211 - 238
  • [8] Lower bound for energies of harmonic tangent unit-vector fields on convex polyhedra
    Majumdar, A
    Robbins, JM
    Zyskin, M
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2004, 70 (02) : 169 - 183
  • [9] Lower Bound for Energies of Harmonic Tangent Unit-Vector Fields on Convex Polyhedra
    A. Majumdar
    J. M. Robbins
    M. Zyskin
    [J]. Letters in Mathematical Physics, 2004, 70 : 169 - 183
  • [10] Remarks on η-Einstein unit tangent bundles
    Chai, Y. D.
    Chun, S. H.
    Park, J. H.
    Sekigawa, K.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2008, 155 (01): : 31 - 42