Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation

被引:189
|
作者
Lin, Q
Tobiska, L
Zhou, A
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Computat Math & Sci Engn Comp, Beijing 100080, Peoples R China
[2] Univ Magdeburg, Inst Anal & Numer, D-39016 Magdeburg, Germany
基金
中国国家自然科学基金;
关键词
non-conforming finite elements; superconvergence; postprocessing; extrapolation;
D O I
10.1093/imanum/drh008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well-known that on uniform meshes the piecewise linear conforming finite element solution of the Poisson equation approximates the interpolant to a higher order than the solution itself. In this paper, this type of superclose property is studied for the canonical interpolant defined by the nodal functionals of several non-conforming finite elements of lowest order. By giving explicit examples we show that some non-conforming finite elements do not admit the superclose property. In particular, we discuss two non-conforming finite elements which satisfy the superclose property. Moreover, applying a postprocessing technique, we can also state a superconvergence property for the discretization error of the postprocessed discrete solution to the solution itself. Finally, we show that an extrapolation technique leads to a further improvement of the accuracy of the finite element solution.
引用
收藏
页码:160 / 181
页数:22
相关论文
共 50 条
  • [1] Non-conforming mesh refinement for high-order finite elements
    Červený, Jakub
    Dobrev, Veselin
    Kolev, Tzanio
    arXiv, 2019,
  • [2] Non-conforming finite element method with tetrahedral elements
    Ito, Yasuhisa
    Igarashi, Hajime
    Watanabe, Kota
    Iijima, Yosuke
    Kawano, Kenji
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2012, 39 (1-4) : 739 - 745
  • [3] Non-conforming high order approximations of the elastodynamics equation
    Antonietti, P. F.
    Mazzieri, I.
    Quarteroni, A.
    Rapetti, F.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 209 : 212 - 238
  • [4] Inf-sup stable non-conforming finite elements of arbitrary order on triangles
    Matthies, G
    Tobiska, L
    NUMERISCHE MATHEMATIK, 2005, 102 (02) : 293 - 309
  • [5] High Order Finite Difference Methods for the Wave Equation with Non-conforming Grid Interfaces
    Siyang Wang
    Kristoffer Virta
    Gunilla Kreiss
    Journal of Scientific Computing, 2016, 68 : 1002 - 1028
  • [6] Inf-sup stable non-conforming finite elements of arbitrary order on triangles
    Gunar Matthies
    Lutz Tobiska
    Numerische Mathematik, 2005, 102 : 293 - 309
  • [7] Non-conforming and conforming five-node quadrilateral graded finite elements
    Gautam, Asim
    Kim, Jeongho
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024, 31 (21) : 5173 - 5187
  • [8] High Order Finite Difference Methods for the Wave Equation with Non-conforming Grid Interfaces
    Wang, Siyang
    Virta, Kristoffer
    Kreiss, Gunilla
    JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (03) : 1002 - 1028
  • [9] NON-CONFORMING MESH GLUING IN THE FINITE-ELEMENTS METHOD
    QUIROZ, L
    BECKERS, P
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1995, 38 (13) : 2165 - 2184
  • [10] Convergence analysis of non-conforming Trigonometric Finite Wave Elements
    Heubeck, B.
    Pflaum, C.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (06) : 1920 - 1929