Software-Based Algorithm for Modeling and Correction of Gradient Nonlinearity Distortions in Magnetic Resonance Imaging

被引:0
|
作者
Lee, Tom S. [1 ]
Schubert, Keith E. [1 ]
Schulte, Reinhard W. [2 ]
机构
[1] Calif State Univ San Bernardino, Dept Comp Sci & Engn, San Bernardino, CA 92407 USA
[2] Loma Linda Univ, Ctr Med, Dept Radiat Med, Loma Linda, CA USA
关键词
Magnetic Resonance Imaging; Distortion Correction Algorithm; Matlab; Functional Radiosurgery; GEOMETRIC DISTORTION;
D O I
10.1109/WCECS.2008.15
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Functional radiosurgery is a noninvasive stereotactic technique that requires magnetic resonance image (MRI) sets with high spatial resolution. Gradient nonlinearities introduce geometric distortions that compromise the accuracy of MRI-based stereotactic localization. We present a gradient nonlinearity correction method based on a cubic phantom MRI data set. The approach utilizes a sum of spherical harmonics to model the geometrically warped planes of the cube and applies the model to correct arbitrary image sets acquired with the same scanner In this paper, we give a detailed description of the Matlab distortion correction program, report on its performance in stereotactic localization of phantom markers, and discuss the possibility to accelerate the code using General-Purpose Computing on Graphics Processing Units (GPGPU) techniques.
引用
收藏
页码:52 / +
页数:3
相关论文
共 50 条
  • [1] Computational Algorithm for Modeling and Correction of Gradient Nonlinearity Distortions in Magnetic Resonance Imaging
    Lee, Tom S.
    Schubert, Keith E.
    Schulte, Reinhard W.
    WCECS 2008: WORLD CONGRESS ON ENGINEERING AND COMPUTER SCIENCE, 2008, : 210 - 215
  • [2] Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system
    Tao, S.
    Trzasko, J. D.
    Gunter, J. L.
    Weavers, P. T.
    Shu, Y.
    Huston, J., III
    Lee, S. K.
    Tan, E. T.
    Bernstein, M. A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (02): : N18 - N31
  • [3] Spherical measurement-based analysis of gradient nonlinearity in magnetic resonance imaging
    Yang, Xiaoli
    Wang, Zhaolian
    Wang, Qian
    Zhang, Yiting
    Song, Zixuan
    Zhang, Yuchang
    Qi, Yafei
    Ma, Xiaopeng
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2025, 42 (01): : 174 - 180
  • [4] Software-based noise reduction in cranial magnetic resonance imaging: Influence on image quality
    Fuelkell, Philipp
    Langner, Soenke
    Friedrich, Nele
    Kromrey, Marie-Luise
    Radosa, Christoph G.
    Platzek, Ivan
    Mensel, Birger
    Kuehn, Jens-Peter
    PLOS ONE, 2018, 13 (11):
  • [5] Intelligent Metamaterials Based on Nonlinearity for Magnetic Resonance Imaging
    Zhao, Xiaoguang
    Duan, Guangwu
    Wu, Ke
    Anderson, Stephan W.
    Zhang, Xin
    ADVANCED MATERIALS, 2019, 31 (49)
  • [6] RF inhomogeneity correction algorithm in magnetic resonance imaging
    Hernández, JA
    Mora, ML
    Schiavi, E
    Toharia, P
    BIOLOGICAL AND MEDICAL DATA ANALYSIS, PROCEEDINGS, 2004, 3337 : 1 - 8
  • [7] A Projection Algorithm for Gradient Waveforms Design in Magnetic Resonance Imaging
    Chauffert, Nicolas
    Weiss, Pierre
    Kahn, Jonas
    Ciuciu, Philippe
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (09) : 2026 - 2039
  • [8] Phantom-based field maps for gradient nonlinearity correction in diffusion imaging
    Rogers, Baxter P.
    Blaber, Justin
    Newton, Allen T.
    Hansen, Colin B.
    Welch, E. Brian
    Anderson, Adam W.
    Luci, Jeffrey J.
    Pierpaoli, Carlo
    Landman, Bennett A.
    MEDICAL IMAGING 2018: PHYSICS OF MEDICAL IMAGING, 2018, 10573
  • [9] Fast Algorithm for Calculation of Inhomogeneity Gradient in Magnetic Resonance Imaging Data
    Hui, Cheukkai
    Zhou, Yu Xiang
    Narayana, Ponnada
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 32 (05) : 1197 - 1208
  • [10] Magnetic resonance spectroscopic imaging for visualization and correction of distortions in MRI: High precision applications in neurosurgery
    Weis, J
    Ericsson, A
    Silander, HC
    MAGNETIC RESONANCE IMAGING, 1998, 16 (10) : 1265 - 1272