Nano-assembly hierarchical Fe-Ni-Se/Cu(OH)2 with induced interface engineering as highly efficient electrocatalyst for oxygen evolution reaction

被引:8
|
作者
Du, Ying [1 ]
Zhou, Yun [1 ]
Zhao, Qian [1 ]
Zhou, Yujie [1 ]
Chen, Yeke [1 ]
Jiang, Tingshun [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Zhenjiang 212013, Peoples R China
关键词
Oxygen evolution reaction; Hierarchical structure; Interface engineering; Non-noble-metal; Selenide; DOUBLE HYDROXIDE NANOSHEETS; HYDROGEN-EVOLUTION; BIFUNCTIONAL ELECTROCATALYST; COPPER FOAM; OXIDE ELECTROCATALYST; IRON SELENIDE; NICKEL FOAM; WATER; CATALYST; PERFORMANCE;
D O I
10.1016/j.electacta.2022.140186
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Developing novel electrocatalysts with both high efficiency and low cost are highly imperative for the oxygen evolution reaction (OER). In this work, the hierarchical Fe-Ni-Se/Cu(OH)(2)/CF with core-shell structural nanorod arrays were fabricated via the facile electrodeposition treatment after the self-supported anodization of copper foam (CF). The as-prepared catalytic electrode presents prominent OER performance with the low overpotential of 272 mV at the current density of 100 mA cm-2 and behaves the impressive durability for almost 58 h, outperforming most of the previously reported electrocatalysts. The obtained excellent activity could be ascribed to the unique hierarchical structure composed of the Fe-Ni-Se shell with superb conductivity and the Cu(OH)(2) nanorods core, which could establish the synergistic effect in the interface engineering and further increase electron transfer rate. Moreover, it is identified that the catalyst experienced the reconstruction of phases and microstructure during the OER operation. The produced oxygen vacancies and fluffy ultrathin nanosheets are beneficial to the reduction of reaction kinetics as well as the expose of active sites. Our study may pave the way to design noble-metal-free catalyst with rational structure and remarkable activity for water splitting in the future.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Hierarchical Fe-doped Ni3Se4 ultrathin nanosheets as an efficient electrocatalyst for oxygen evolution reaction
    Du, Jing
    Zou, Zehua
    Liu, Chen
    Xu, Cailing
    NANOSCALE, 2018, 10 (11) : 5163 - 5170
  • [2] A crystalline-amorphous interface engineering in Fe-doped NixP electrocatalyst for highly efficient oxygen evolution reaction
    Cao, Shuai
    Fan, Xiaoming
    Wei, Li
    Cai, Ting
    Lin, Yuping
    Yang, Zeheng
    DALTON TRANSACTIONS, 2023, 52 (18) : 5999 - 6007
  • [3] Interface engineered Ni3Se2/Ni3S2/NF heterostructure as a highly efficient electrocatalyst for robust oxygen evolution reaction
    Lin, Man
    Gu, Mingzheng
    Deng, Xueya
    Xie, Qiang
    Zhang, Xiaojun
    CHEMICAL ENGINEERING JOURNAL, 2023, 468
  • [4] Engineering Ni(OH)2 Nanosheet on CoMoO4 Nanoplate Array as Efficient Electrocatalyst for Oxygen Evolution Reaction
    Xu, Yan
    Xie, Linjie
    Li, Di
    Yang, Rong
    Jiang, Deli
    Chen, Min
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (12): : 16086 - 16095
  • [5] (Ni,Co)Se@Ni(OH)2 heterojunction nanosheets as an efficient electrocatalyst for the hydrogen evolution reaction
    Du, Yunmei
    Zhao, Huimin
    Wang, Wensi
    Yang, Yu
    Wang, Minghui
    Li, Shaoxiang
    Liu, Yanru
    Wang, Lei
    DALTON TRANSACTIONS, 2021, 50 (01) : 391 - 397
  • [6] Highly Efficient NiS/Ni(OH)x Heterogeneous Structure Electrocatalyst with Regenerative Oxygen Vacancies for Oxygen Evolution Reaction
    Qin, Yue
    Xu, Qingli
    Zhao, Rong
    Wang, Qingfa
    CHEMSUSCHEM, 2024,
  • [7] Fe-doped Ni2P porous nanofibers as highly efficient electrocatalyst for oxygen evolution reaction
    Liu, Jiang
    Li, Chuyu
    Ye, Qing
    Lin, Lu
    Wang, Yufeng
    Sun, Min
    Cheng, Yongliang
    CATALYSIS COMMUNICATIONS, 2022, 163
  • [8] Interface-Engineered Ni(OH)2/β-like FeOOH Electrocatalysts for Highly Efficient and Stable Oxygen Evolution Reaction
    Zhu, Kaijian
    Luo, Wenjun
    Zhu, Guoxiang
    Wang, Jun
    Zhu, Yongfa
    Zou, Zhigang
    Huang, Wei
    CHEMISTRY-AN ASIAN JOURNAL, 2017, 12 (20) : 2720 - 2726
  • [9] Straightforward fabrication of robust Fe-doped Ni3Se2 supported nickel foam as a highly efficient electrocatalyst for the oxygen evolution reaction
    Ghaemmaghami, Mostafa
    Yamini, Yadollah
    Saievar-Iranizad, Esmaiel
    Bayat, Amir
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (03): : 1150 - 1156
  • [10] Cu(OH)2 Nanorods/Ni(OH)2 Nanosheets as Highly Efficient Catalyst for Hydrogen Evolution Reaction
    Hu, Junping
    Liu, Youxing
    CHEMISTRYSELECT, 2021, 6 (17): : 4129 - 4134