Poly-Spline Finite-Element Method

被引:20
|
作者
Schneider, Teseo [1 ]
Dumas, Jeremie [2 ,3 ]
Gao, Xifeng [2 ,4 ]
Botsch, Mario [5 ]
Panozzo, Daniele [1 ]
Zorin, Denis [1 ]
机构
[1] NYU, Courant Inst Math Sci, 60 5th Ave, New York, NY 10011 USA
[2] NYU, New York, NY 10003 USA
[3] nTopology, 153 Lafayette St, New York, NY 10013 USA
[4] Florida State Univ, Dept Comp Sci, 171 James Love Bldg,1017 Acad Way, Tallahassee, FL 32306 USA
[5] Bielefeld Univ, Inspirat 1, D-33615 Bielefeld, Germany
来源
ACM TRANSACTIONS ON GRAPHICS | 2019年 / 38卷 / 03期
基金
瑞士国家科学基金会; 美国国家科学基金会;
关键词
Finite elements; polyhedral meshes; splines; simulation;
D O I
10.1145/3313797
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We introduce an integrated meshing and finite-element method pipeline enabling solution of partial differential equations in the volume enclosed by a boundary representation. We construct a hybrid hexahedral-dominant mesh, which contains a small number of star-shaped polyhedra, and build a set of high-order bases on its elements, combining triquadratic B-splines, triquadratic hexahedra, and harmonic elements. We demonstrate that our approach converges cubically under refinement, while requiring around 50% of the degrees of freedom than a similarly dense hexahedralmesh composed of triquadratic hexahedra. We validate our approach solving Poisson's equation on a large collection of models, which are automatically processed by our algorithm, only requiring the user to provide boundary conditions on their surface.
引用
收藏
页数:16
相关论文
共 50 条