On estimating the rate-distortion function

被引:0
|
作者
Harrison, Matthew [1 ]
Kontoyiannis, Ioannis [2 ]
机构
[1] Brown Univ, Div Appl Math, Providence, RI 02912 USA
[2] Univ Athens Econ & Business, Dept Informat, Athens, Greece
关键词
D O I
10.1109/ISIT.2006.261847
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Suppose a string X-1(n) = (X-1, X-2,..., X-n) is generated by a stationary memoryless source (X-n)(n >= 1) with unknown distribution P. When the source is finite-valued, the problem of estimating the entropy H(P) using the data X-1(n) has received a lot of attention. Perhaps the simplest method is the so-called plug-in estimator H(P-X1n), where P-X1n is the empirical distribution of the data X-1(n). This estimator is always strongly consistent, that is, H(P-X1n) -> H(P) with probability one, as n -> infinity. In this work we consider the natural generalization of estimating the rate-distortion function R(D, P). Our motivation comes from questions in lossy data compression and from cases where the data under consideration do not take values in a discrete alphabet. Our primary focus is the asymptotic behavior of the plug-in estimator R(P-X1n, D). This estimator need not be consistent, but in many cases it is. Several extensions are also considered, including stationary ergodic sources, and instances where the rate-distortion function is defined over a restricted class of coding distributions.
引用
收藏
页码:267 / +
页数:2
相关论文
共 50 条
  • [1] Estimating the Rate-Distortion Function by Wasserstein Gradient Descent
    Yang, Yibo
    Eckstein, Stephan
    Nutz, Marcel
    Mandt, Stephan
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [2] Estimation of the rate-distortion function
    Harrison, Matthew T.
    Kontoyiannis, Ioannis
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2008, 54 (08) : 3757 - 3762
  • [3] On algorithmic rate-distortion function
    Vereshchagin, Nikolai
    Vitanyi, Paul
    [J]. 2006 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, VOLS 1-6, PROCEEDINGS, 2006, : 798 - +
  • [4] DISTORTION-COMPLEXITY AND RATE-DISTORTION FUNCTION
    MURAMATSU, J
    KANAYA, F
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1994, E77A (08) : 1224 - 1229
  • [5] RATE-DISTORTION FUNCTION FOR A CLASS OF SOURCES
    SAKRISON, DJ
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 1970, 16 (01) : 126 - +
  • [6] Rate-distortion function for α-stable sources
    Kuruoglu, Ercan E.
    Wang, Jia
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2016, 70 (07) : 974 - 978
  • [7] RESTORATION,RESOLUTION, AND RATE-DISTORTION FUNCTION
    RUSHFORT.CK
    [J]. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1972, 62 (11) : 1350 - 1351
  • [8] On the uniform continuity of the rate-distortion function
    Palaiyanur, Hari
    Sahai, Anant
    [J]. 2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 857 - 861
  • [9] BOUNDS ON RATE-DISTORTION FUNCTION FOR GEOMETRIC MEASURE OF DISTORTION
    SHARMA, BD
    MATHUR, YD
    MITTER, J
    [J]. REVUE FRANCAISE D AUTOMATIQUE INFORMATIQUE RECHERCHE OPERATIONNELLE, 1973, 7 (AUG): : 29 - 38
  • [10] The rate-distortion function of a Poisson process with a queueing distortion measure
    Coleman, Todd P.
    Kiyavash, Negar
    Subramanian, Vijay G.
    [J]. DCC: 2008 DATA COMPRESSION CONFERENCE, PROCEEDINGS, 2008, : 63 - 72