Domain Ontology Induction using Word Embeddings

被引:0
|
作者
Gupta, Niharika [1 ]
Podder, Sanjay [2 ]
Annervaz, K. M. [2 ]
Sengupta, Shubhashis [2 ]
机构
[1] IIIT Delhi, Delhi, India
[2] Accenture Technol Labs, Chicago, IL USA
关键词
Language Modeling; Deep Learning; Natural Language Processing; Ontology Learning; Word Vectors; Clustering; Latent Semantic Indexing;
D O I
10.1109/ICMLA.2016.81
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ontology, the shared formal conceptualization of domain information, has been shown to have multiple applications in modeling, processing and understanding natural language text. In this work, we use distributed word vectors out of various recent language models from Deep Learning for semi- automated domain ontology creation for closed domains. We cover all major aspects of Domain Ontology Induction or Learning like concept identification, attribute identification, taxonomical and nontaxonomical relationship identification using the distributed word vectors. Preliminary results show that simple clustering based methods using distributed word vectors from these language models outperforms methods using models like LSI in ontology learning for closed domains.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 50 条
  • [1] Ontology Matching with Word Embeddings
    Zhang, Yuanzhe
    Wang, Xuepeng
    Lai, Siwei
    He, Shizhu
    Liu, Kang
    Zhao, Jun
    Lv, Xueqiang
    [J]. CHINESE COMPUTATIONAL LINGUISTICS AND NATURAL LANGUAGE PROCESSING BASED ON NATURALLY ANNOTATED BIG DATA, CCL 2014, 2014, 8801 : 34 - 45
  • [2] Using Word Embeddings to Learn a Better Food Ontology
    Youn, Jason
    Naravane, Tarini
    Tagkopoulos, Ilias
    [J]. FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2020, 3
  • [3] Domain Adaptation for Word Sense Disambiguation Using Word Embeddings
    Komiya, Kanako
    Suzuki, Shota
    Sasaki, Minoru
    Shinnou, Hiroyuki
    Okumura, Manabu
    [J]. COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING (CICLING 2017), PT I, 2018, 10761 : 195 - 206
  • [4] Word sense induction using word embeddings and community detection in complex networks
    Correa, Edilson A., Jr.
    Amancio, Diego R.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 523 : 180 - 190
  • [5] Constructing an Enriched Domain Taxonomy for Hindi using Word Embeddings
    Keshava, Vaishakh
    Avvaru, Pravalika
    Kamath, Sowmya S.
    Geetha, V
    [J]. 2017 INTERNATIONAL CONFERENCE ON ASIAN LANGUAGE PROCESSING (IALP), 2017, : 127 - 130
  • [6] Word Embeddings for the Software Engineering Domain
    Efstathiou, Vasiliki
    Chatzilenas, Christos
    Spinellis, Diomidis
    [J]. 2018 IEEE/ACM 15TH INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES (MSR), 2018, : 38 - 41
  • [7] Interpretable Word Embeddings For Medical Domain
    Jha, Kishlay
    Wang, Yaqing
    Xun, Guangxu
    Zhang, Aidong
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1061 - 1066
  • [8] A Comparison of Domain-based Word Polarity Estimation using different Word Embeddings
    Garcia-Pablos, Aitor
    Cuadros, Montse
    Rigau, German
    [J]. LREC 2016 - TENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, 2016, : 54 - 60
  • [9] Large-scale Taxonomy Induction Using Entity and Word Embeddings
    Ristoski, Petar
    Faralli, Stefano
    Ponzetto, Simone Paolo
    Paulheim, Heiko
    [J]. 2017 IEEE/WIC/ACM INTERNATIONAL CONFERENCE ON WEB INTELLIGENCE (WI 2017), 2017, : 81 - 87
  • [10] Contextualizing Citations for Scientific Summarization using Word Embeddings and Domain Knowledge
    Cohan, Arman
    Goharian, Nazli
    [J]. SIGIR'17: PROCEEDINGS OF THE 40TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2017, : 1133 - 1136