Stability of equilibrium points for incommensurate fractional-order nonlinear systems

被引:0
|
作者
Ji Yude [1 ,2 ]
Lu Jiyong [3 ]
Qiu Liqing [2 ]
机构
[1] Hebei Normal Univ, Coll Math & Sci Informat, Shijiazhuang 050024, Hebei, Peoples R China
[2] Hebei Univ Sci & Technol, Coll Sci, Shijiazhuang 050018, Hebei, Peoples R China
[3] Hebei Univ Sci & Technol, Sch Elect Engn, Shijiazhuang 050018, Hebei, Peoples R China
关键词
Incommensurate Fractional-Order System; Asymptotical Stability; Feedback Control; CHAOTIC DYNAMICS; DIFFERENTIAL-EQUATIONS; FINANCIAL-SYSTEM; SYNCHRONIZATION; ROSSLER; LORENZ; DELAY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article, we presents a stability method based on the eigenvalue problem of system matrix for incommensurate fractional-order nonlinear systems. Based on the stability theorems in fractional differential equations, the asymptotical stability of all existing equilibrium points are studied for incommensurate fractional-order non-chaotic Lotka-Volterra predator-prey system and fractional-order chaotic Chen system by feedback control method.
引用
收藏
页码:10453 / 10458
页数:6
相关论文
共 50 条
  • [1] Stabilization of equilibrium points for commensurate fractional-order nonlinear systems
    Guo, Yanping
    Du, Mingxing
    Fan, Qiaoqiao
    Ji, Yude
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 10475 - 10480
  • [2] On robust stability of incommensurate fractional-order systems
    Tavazoei, Mohammad
    Asemani, Mohammad Hassan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 90
  • [3] Novel convenient conditions for the stability of nonlinear incommensurate fractional-order difference systems
    Shatnawi, Mohd Taib
    Djenina, Noureddine
    Ouannas, Adel
    Batiha, Iqbal M.
    Grassi, Giuseppe
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (02) : 1655 - 1663
  • [4] On the Stability of Linear Incommensurate Fractional-Order Difference Systems
    Djenina, Noureddine
    Ouannas, Adel
    Batiha, Iqbal M.
    Grassi, Giuseppe
    Pham, Viet-Thanh
    MATHEMATICS, 2020, 8 (10) : 1 - 12
  • [5] On attraction of equilibrium points of fractional-order systems and corresponding asymptotic stability criteria
    Ying Yang
    Yong He
    Yi-Bo Huang
    Nonlinear Dynamics, 2022, 109 : 2865 - 2874
  • [6] On attraction of equilibrium points of fractional-order systems and corresponding asymptotic stability criteria
    Yang, Ying
    He, Yong
    Huang, Yi-Bo
    NONLINEAR DYNAMICS, 2022, 109 (04) : 2865 - 2874
  • [7] Stability of a Class of Fractional-Order Nonlinear Systems
    Li, Tianzeng
    Wang, Yu
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
  • [8] Stability analysis of time-delay incommensurate fractional-order systems
    Tavazoei, Mohammad
    Asemani, Mohammad Hassan
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 109
  • [9] On the Stability of Incommensurate h-Nabla Fractional-Order Difference Systems
    Djenina, Noureddine
    Ouannas, Adel
    Oussaeif, Taki-Eddine
    Grassi, Giuseppe
    Batiha, Iqbal M.
    Momani, Shaher
    Albadarneh, Ramzi B.
    FRACTAL AND FRACTIONAL, 2022, 6 (03)
  • [10] Finite-time stability of equilibrium point of a class of fractional-order nonlinear systems
    Feng, Zaiyong
    Xiang, Zhengrong
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (06):