Resolution of the symmetric nonnegative inverse eigenvalue problem for matrices subordinate to a bipartite graph

被引:2
|
作者
Leal-Duarte, A
Johnson, CR
机构
[1] Univ Coimbra, Dept Matemat, P-3000 Coimbra, Portugal
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
Fourier Analysis; Eigenvalue Problem; Operator Theory; Bipartite Graph; Potential Theory;
D O I
10.1023/B:POST.0000042733.60148.47
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
There is a symmetric nonnegative matrix A, subordinate to a given bipartite graph G on n vertices, with eigenvalues lambda(1)greater than or equal tolambda(2)greater than or equal to...greater than or equal to(n) if and only if lambda(1) + lambda(n) greater than or equal to 0, lambda(2) + lambda(n-1) greater than or equal to 0,..., lambda(m) + lambda(n-m+1) greater than or equal to 0, lambda(m+1)greater than or equal to0,...,lambda(n-m) greater than or equal to 0, in which m is the matching number of G. Other observations are also made about the symmetric nonnegative inverse eigenvalue problem with respect to a graph.
引用
收藏
页码:209 / 213
页数:5
相关论文
共 50 条