An optimal Berry-Esseen type inequality for expectations of smooth functions

被引:1
|
作者
Mattner, L. [1 ]
Shevtsova, I. G. [2 ,3 ,4 ]
机构
[1] Trier Univ, FB Math 4, Trier, Germany
[2] Hangzhou Dianzi Univ, Hangzhou, Zhejiang, Peoples R China
[3] Lomonosov Moscow State Univ, Fac Computat Math & Cybernet, Moscow, Russia
[4] Inst Informat Problems FRC IC RAS, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
INDEPENDENT RANDOM-VARIABLES; NORMAL APPROXIMATION; GAUSSIAN APPROXIMATION; ACCURACY; SUMS;
D O I
10.1134/S1064562417030188
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We provide an optimal Berry-Esseen type inequality for Zolotarev's ideal zeta(3)-metric measuring the difference between expectations of sufficiently smooth functions, like vertical bar.vertical bar(3), of a sum of independent random variables X-1,...X-n with finite third-order moments and a sum of independent symmetric two-point random variablesY(i), isoscedastic to the X-i. In the homoscedastic case of equal variances, and in particular, in case of identically distributed X-1,...X-n the approximating law is a standardized symmetric binomial one. As a corollary, we improve an already optimal estimate of the accuracy of the normal approximation due to Tyurin (2009).
引用
收藏
页码:250 / 253
页数:4
相关论文
共 50 条