Uncertainty quantification and global sensitivity analysis of continuous distillation considering the interaction of parameter uncertainty with feed variability

被引:2
|
作者
Gozalvez-Zafrilla, Jose M. [1 ]
Carlos Garcia-Diaz, J. [2 ]
Santafe-Moros, Asuncion [1 ]
机构
[1] Univ Politecn Valencia, Res Inst Ind Radiophys & Environm Safety ISIRYM, Valencia, Spain
[2] Univ Politecn Valencia, Dept Appl Stat Operat Res & Qual, Valencia, Spain
关键词
Distillation; Uncertainty; Sensitivity; Morris analysis; Sobol method; VAPOR-LIQUID-EQUILIBRIA; SIEVE TRAY EFFICIENCY; METHANOL-WATER; FUNDAMENTAL MODEL; SURFACE-TENSION; BINARY-SYSTEMS; DESIGN; PREDICTION; OPTIMIZATION; ETHANOL;
D O I
10.1016/j.ces.2021.116509
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this work, uncertainty and sensitivity analyses were applied to study the joint effects of model parameter uncertainty and feed variability on the response of a computational code for methanol-water continuous distillation. First, model parameter uncertainty (liquid-vapour equilibrium (VLE), enthalpy and tray efficiency) was characterised using existing experimental data. Afterwards, three tower configurations working at two operational modes (fixed product composition and fixed operation conditions) were studied at three feed variability levels. Morris analysis revealed the high importance of the VLE and efficiency-related factors. Sobol sensitivity analysis determined with more precision the sensitivity of the response to the parameters and detected non-linear effects and interactions. The Monte Carlo propagation method allowed obtaining the uncertainty margins as a function of feed variability. The results showed high impact of the model parameter uncertainty and encourage the use of the methods shown to obtain robust designs and quantify simulation accuracy. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Global Sensitivity Analysis and Uncertainty Quantification for a Hypersonic Shock Interaction Flow
    Burt, Jonathan M.
    Josyula, Eswar
    [J]. JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 2015, 29 (03) : 439 - 449
  • [2] Uncertainty quantification and global sensitivity analysis of seismic metabarriers
    Zeighami, Farhad
    Sandoval, Leonardo
    Guadagnini, Alberto
    Di Federico, Vittorio
    [J]. ENGINEERING STRUCTURES, 2023, 277
  • [3] Uncertainty quantification and global sensitivity analysis for economic models
    Harenberg, Daniel
    Marelli, Stefano
    Sudret, Bruno
    Winschel, Viktor
    [J]. QUANTITATIVE ECONOMICS, 2019, 10 (01) : 1 - 41
  • [4] A Global Sensitivity Analysis of Parameter Uncertainty in the CLASSIC Model
    Deepak, Raj S. N.
    Seiler, Christian
    Monahan, Adam H.
    [J]. ATMOSPHERE-OCEAN, 2024,
  • [5] Comparative Assessment of Two Global Sensitivity Approaches Considering Model and Parameter Uncertainty
    Dai, Heng
    Liu, Yujiao
    Guadagnini, Alberto
    Yuan, Songhu
    Yang, Jing
    Ye, Ming
    [J]. WATER RESOURCES RESEARCH, 2024, 60 (02)
  • [6] Global sensitivity analysis for uncertainty quantification in fire spread models
    Ujjwal, K. C.
    Aryal, Jagannath
    Garg, Saurabh
    Hilton, James
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2021, 143
  • [7] Local and global sensitivity analysis for a reactor design with parameter uncertainty
    Haaker, MPR
    Verheijen, PJT
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2004, 82 (A5): : 591 - 598
  • [8] Global sensitivity analysis of parameter uncertainty in landscape evolution models
    Skinner, Christopher J.
    Coulthard, Tom J.
    Schwanghart, Wolfgang
    Van De Wiel, Marco J.
    Hancock, Greg
    [J]. GEOSCIENTIFIC MODEL DEVELOPMENT, 2018, 11 (12) : 4873 - 4888
  • [9] An application of the Kriging method in global sensitivity analysis with parameter uncertainty
    Wang, Pan
    Lu, Zhenzhou
    Tang, Zhangchun
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (09) : 6543 - 6555
  • [10] Notch Filter Sensitivity Analysis With Root Locus Considering Parameter Uncertainty
    Susca, Mircea
    Dobra, Petru
    [J]. 2016 20TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2016, : 387 - 391