A single-nanozyme colorimetric array based on target-induced differential surface passivation for quantification and discrimination of Cl-, Br- and I- ions

被引:27
|
作者
Wang, Linjie [1 ]
Xu, Xuechao [1 ,2 ]
Liu, Peng [1 ]
Wang, Mengzhu [1 ]
Niu, Xiangheng [1 ]
Pan, Jianming [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, Inst Green Chem & Chem Technol, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Jiangsu Univ, Sch Food & Biol Engn, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Halide ion; Nanozyme; Colorimetric detection; Sensor array; Surface passivation; Principal component analysis; OXIDASE-LIKE ACTIVITY; SENSOR ARRAY; CAPILLARY-ELECTROPHORESIS; SILVER NANOPARTICLES; ANIONS; ENZYME; HALIDE; NANOCLUSTERS; AGGREGATION; FLUORESCENT;
D O I
10.1016/j.aca.2021.338451
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Abnormal levels of halide ions in drinking water have enormous threats to human health, and thus designing reliable and sensitive methods to quantify and distinguish these ions becomes extremely crucial. Herein, we develop a single-nanozyme colorimetric array based on target-induced differential surface passivation for the quantification and discrimination of Cl-,Br and I- ions. Silver citrate (Ag(3)Cit) is designed as an oxidase mimic to efficiently catalyze the 3,3',5,5'-tetramethylbenzidine (TMB) chromogenic reaction. When halide ions (Cl-, Br- and I-) are present, due to their different precipitation interactions with the Ag(I) entity in Ag(3)Cit, they can passivate the active surface of the nanozyme to various degrees, resulting in the inhibited TMB chromogenic reaction differentially. According to this principle, simple and efficient quantitative detection of Cl- Br- and I- ions was achieved, with all the detection limits down to the nM level. By employing Ag(3)Cit as a single sensing element, a nanozyme catalysis-based colorimetric array was further established, and both individual and mixed ions were successfully distinguished by integrating the array with principal component analysis. Accurate identification of unknown samples was also verified via a double-blind protocol, indicating potential applications of the array in practice. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 4 条